100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Descriptive and Inferential Statistics €6,96
In winkelwagen

Samenvatting

Samenvatting Descriptive and Inferential Statistics

 9 keer bekeken  0 keer verkocht

Samenvatting van alle powerpoints en lessen. Gemaakt voor het schakelprogramma van de master Psychologie voor het vak Descriptive and Inferential Statistics voor de examenperiode van januari 2025. Zie de tags voor de verschillende onderwerpen. Het document heeft 38 bladzijdes en is gemaakt in m...

[Meer zien]
Laatste update van het document: 1 week geleden

Voorbeeld 4 van de 38  pagina's

  • 15 december 2024
  • 23 december 2024
  • 38
  • 2024/2025
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
Mellowerillish
DIS – januari 2025 1




VARIABLES
= the values we want to measure, e.g. time in seconds, score on a test, gender
- Random variables are variables whose values are unknown and are realizations of a random process

INDEPENDENT VS DEPENDENT VARIABLES
Independent variables Dependent variables
= variable that is not dependent on any other = variable that depends on other factors, the output,
variable, the input, the predictor, the explanation the criteria, the response
- Commonly represented as X1, …, Xj, …, Xk - Commonly represented as Y1, …, Yj, …, Yk
- E.g. the amount of time spent studying - E.g. the exam result

DISCRETE VS CONTINUOUS VARIABLES
Discrete variables Continuous variables
= a variable that only assumes a limited number of = numeric variable that has an infinite number of
values possibilities between two values
- E.g. someone speaks 3 languages, yes/no - E.g. someone looked at a picture for 1,3828 sec
- A discrete variable that - A variable is considered continuous when
• Only assumes two values is a dichotomous • The variable takes on a wide range of values
variable • The variable is a manifestation of an
• Only assumes three values is a underlying continuous variable
trichotomous variable
• Assumes three or more values is a
polytomous variable

QUALITATIVE VS QUANTITATIVE VARIABLES
Qualitative variables Quantitative variables
= numbers only refer to equalities and inequalities = numbers are assigned so that differences between
between the research elements (regarding the numbers correspond with distances between
measured characteristics) research elements (regarding the measured
 The number is only a name or label characteristics)
 Calculating is not meaningful  Number is a real number
 Calculating is meaningful
- Nominal variable, e.g. Dutch (1), English (2)
- Ordinal variable, e.g. not satisfied (1) → very - Interval variable, e.g. temperature in °C, Likert-
satisfied (5) scale in numbers
• ! the numbers must be compared by - Ratio variable, e.g. temperature in °K, time
size/order but are not meaningful to
calculate with

There is a hierarchy within the different types of variables:
- While all quantitative variables can be ordinal variables
(seeing as they are numbers and can be ordened), not all
ordinal variables are quantitative variables
- Ordinal variables can be thought of as qualitative variables
where order matters but numerical measurement or
distance between categories doesn’t really matter

,DIS – januari 2025 2



DESCRIBING 1 VARIABLE

TABLES
- Variables are represented by capital letters in
italics in the columns, e.g. X4
- Research elements are located in the rows and
are represented with a Xij formula, with i
referring to the research element and j to the
variable, e.g. X14 = 3




FREQUENCY TABLES
The (absolute) frequency distribution of X is denoted as f(X), e.g. f(X=77) = 3 because the score 77 occurs 3
times

Cumulative frequency of a specific score on X is the total number of scores lower than or equal to that specific
score and its distribution is denoted as F(X), e.g. F(X=77) = 14
- This is not meaningful for qualitative data as the categories are not ordered

Relative frequencies or proportions of scores on X are the frequencies divided by the number of observations
and its distribution is denoted as p(X), e.g. p(X=77) = 3/30 = 0.1

Relative cumulative frequencies or cumulative proportions of a specific score on X equals the cumulative
frequency divided by the total number of observations and its distribution is denoted as P(X), e.g. P(X=77) =
14/30 = 0.47




STEM-AND-LEAF PLOTS
- Read scores by stem.leaf*101, e.g. 8.4*101 = 84
- When looking for a certain percentile and the n is even,
take then average of the two scores, e.g. P50 of n = 30 is
the 15th score, so (78+78)/2 = 78
- When looking for a percentile and matching score is not
in there (e.g. P25 when n = 10), look at the score above

,DIS – januari 2025 3


KEY STATISTICS

PERCENTILES
= score on X under which at least (so lower or equal) a specific % of scores is situated, e.g. 10th percentile
corresponds to score 8 so at least 10% of scores ≤ 8 → P10 = 8
- To calculate, simply find the corresponding score to the % given in the relative cumulative frequency table
• Is the % not literally in the table? Find the smallest higher percentile and take that score
• Is the % literally in the table and n is an even number? Take the median between that one and the one
above
- Special percentiles:
• Quartiles (in 4), with Q1 = P25, Q2 = P50 and Q3 = P75
• Deciles (in 10), with D1 = Pc10, D2 = P20, …
 These are all special forms of quantiles or fractiles: a score under which a specific proportion of scores is
situated

Example with Stem-and-leaf plot




CENTER

MODE
= score or category with highest frequency, e.g. 2, 3, 3, 4, 6 → mode = 3
- Can be used for both quantitative and qualitative variables
- Uniqueness?
• Unimodal distribution: mode is uniquely defined
• Bimodal or multimodal distribution: two (or more) scores or categories have the maximum frequency,
e.g. 2, 3, 3, 4, 4, 6 → bimodal: mode = 3 and 4

MEDIAN
= the middle value, so (at least) half of the scores are above it and (at least) half are below it
= Q2 = P50
- Calculate by ordering all observed scores, then taking the middle score or averaging the two middle scores

THE (ARITHMETIC) AVERAGE
1 1
𝑋̅ = 𝑛 ∑𝑛𝑖=1 𝑋𝑖 with ∑𝑛𝑖=1 𝑋𝑖 as the sum of all observed values and 𝑛 as this sum divided by the number of
observed values, e.g. 2, 3, 3, 4, 4, 5 → 𝑋̅ = (2+3+3+4+4+5)/6 = 21/6 = 3.5

, DIS – januari 2025 4


Different formulas for frequency table with k scores with examples:
1
- Using absolute frequencies: 𝑋̅ = 𝑛 ∑𝑘𝑖=1 𝑋𝑖 × 𝑓𝑖 , waarbij ∑𝑘𝑖=1 𝑓𝑖 =
𝑛
e.g. 2, 3, 3, 4, 4, 5 → 𝑋̅ = (2+3x2+4x2+5)/6 = 21/6 = 3.5
- Using relative frequencies: 𝑋̅ = ∑𝑘𝑖=1 𝑋𝑖 × 𝑝𝑖 , waarbij ∑𝑘𝑖=1 𝑝𝑖 = 1
e.g. = 2*.17 + 3*.33 + 4*.33 + 5*.17 = 3.5

SPREAD
If a distribution needs to be described by a single number, one usually chooses a measure of central tendency
(mean, median …). However, two distributions can have the same mean/median yet look completely different!

RANGE
= difference between max and min score
- 𝐵 = 𝑋[𝑚𝑎𝑥] − 𝑋[𝑚𝑖𝑛]
- This is extremely sensitive to outliers!

INTERQUARTILE RANGE
= difference between third and first quartile
- 𝐼𝑄𝑅 = 𝑄3 − 𝑄1
- This is a more robust measure of spread for quantitative variables

VARIANCE
= average quadratic deviation from the arithmetic average
1
- 𝑆𝑋2 = 𝑛 ∑𝑛𝑖=1(𝑋𝑖 − 𝑋̅ )2
- Can never be negative!

Calculate by
1) Sum to n
2) Calculate 𝑋̅
3) Calculate the deviations (𝑋 − 𝑋̅)
4) Square the deviations
5) Sum these squares
6) Divide by n



STANDARD DEVIATION
= corrects the “squaredness” from the variance to ensure it is expressed in the original unit of measurement
- 𝑆𝑋 = √𝑆𝑋2
- Can never be negative!

LINEAR TRANSFORMATIONS
VARIABLE X VARIABLE X’
𝑋 𝑋 ′ = 𝑎 + 𝑏𝑋
𝑆𝑋2 2
𝑆𝑋′ = 𝑏 2 𝑆𝑋2
𝑆𝑋 𝑆𝑋′ = |𝑏|𝑆𝑋

STANDARDIZING AND Z-SCORES
= transforming a variable such that the average becomes 0 and the standard deviation becomes 1
- Scores on standardized variables are called standard scores or z-scores, which indicate how many standard
deviations you score above or below the average
𝑋𝑖 −𝑋̅
- 𝑧𝑖 = 𝑆𝑋

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper Mellowerillish. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,96. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 48298 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,96
  • (0)
In winkelwagen
Toegevoegd