100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary: Business Research Management €15,49
In winkelwagen

Samenvatting

Summary: Business Research Management

 0 keer verkocht

This is a summary from the year

Voorbeeld 4 van de 66  pagina's

  • 23 december 2024
  • 66
  • 2024/2025
  • Samenvatting
Alle documenten voor dit vak (2)
avatar-seller
axel_temmerman
Summary: Business Research Methods [HMA80a] – Axel Temmerman




Business Research Methods
Summary (2024 - 2025)

Brushing up - Hypothesis Testing & Linear Regression........................................2
1. Hypothesis testing and Linear regression.................................................................................... 2
Hypothesis testing......................................................................................................................2
Linear regression....................................................................................................................... 6
2. Introduction SPSS........................................................................................................ 12
Part 1: Logistic Regression.................................................................................... 13
Logistic regression: example................................................................................................... 13
Another example: prcancer.sav............................................................................................... 14
1. The Logistic Regression Model.................................................................................................. 15
Example cancer:...................................................................................................................... 15
2. Regression Coefficients..............................................................................................................17
Estimation method................................................................................................................... 17
Interpretation: in terms of probabilities.....................................................................................18
Interpretation: in terms of odds VERY IMPORTANT FOR EXAM............................................18
3. Testing hypotheses about the model.......................................................................................... 22
Likelihood ratio test.................................................................................................................. 22
4. Quality........................................................................................................................................ 25
5. Assumptions............................................................................................................................... 29
Linearity?................................................................................................................................. 29
Outliers.....................................................................................................................................29
Quasi-multicollinearity (QMC).................................................................................................. 29
Quasi-complete separation (QCS)...........................................................................................30
Part 2: Factor Analysis........................................................................................................ 32
Correlation and Factors....................................................................................................32
1. Correlation Matrix................................................................................................... 34
2. Factors................................................................................................................... 37
3. Interpretation.......................................................................................................... 45
4. Factor scores..........................................................................................................48
Part 3: Reliability analysis...................................................................................................51
Part 4: Cluster Analysis.......................................................................................................56
Cluster analysis methods................................................................................................. 56
Hierarchical clustering................................................................................................ 56
K-means clustering.....................................................................................................64




1

, Summary: Business Research Methods [HMA80a] – Axel Temmerman




Brushing up - Hypothesis Testing & Linear Regression

1. Hypothesis testing and Linear regression

Hypothesis testing

Different types of data
● Qualitative data
○ Nominal data
E.g. Type of car, gender (dummy variable), city you live in
○ Ordinal data
E.g. Attitude against something (totally agree, …, totally disagree),
level of education
● Quantitative data
E.g. Price, exam score, number of customers, GDP, wage

Obtaining the data
Where does the data come from?
● Experiments (ex: medical experiments)
● Observation (ex: facebook, shops)
● Survey (e.g.: find 500 customers and ask about satisfaction with a product)

When looking for data on a specific question:
● Sometimes we can obtain data on all individuals concerned (e.g.: data on all
clients having used the product): population data
● Sometimes we can only obtain data on some individuals concerned (e.g.:
data on 500 clients out of 10000 clients having used the service: sample data




Hypothesis testing – In practice
When we want to test a statement about a population, using sample data, we
perform hypothesis testing
(When we have data on the whole population, hypothesis testing is not necessary!)

A hypothesis = A statement (about a population parameter)

Examples:
● TV Adertisements increase sales
● Anti-immigration statements by a political party increase voting shares for that
party
→ How do we test whether a specific statement is true?


2

, Summary: Business Research Methods [HMA80a] – Axel Temmerman




Hypothesis testing = formal procedure used by statisticians to accept or reject a
hypothesis

Formal procedure (assuming you already have the data:
1. State the hypotheses (H1 and H1)
2. Formulate analysis plan (specify formula or test statistic and the significance
level)
3. Analyze data (compute value of test statistic from data)
4. Interpret results (reject H0 in favor of H1, or not)

Null hypothesis versus Alternative hypothesis
➔ Alternative hypothesis = research hypothesis
Something new, something controversial
E.g. statistics exam:




E.g. wages:


➔ Can we reject H0?

One-sided tests versus two-sided tests
● One-sided test
E.g. statistics exam:


● Two-sided test
E.g. wages:

Specify the test statistic and significance level

We need a formula based on which to decide whether to reject H1 in favor of H1
⇒test statistic

There are different formulas for test statistics, depending on the type of data and on
hypothesis H0 and H1


Specify the test statistic and significance level

The formal testing procedure can lead to errors
● Type 1 error: the null hypothesis is true but we reject it
● Type 2 error: the null hypothesis is false but we fail to reject it
→ How likely are we to commit an error?



3

, Summary: Business Research Methods [HMA80a] – Axel Temmerman




We choose the significance level:

The significance level is the probability to make a type 1 error.

Usually:



Analyze data (compute value of test statistic from data)
● This is done by statistical software (we use SPSS)
○ Open database
○ Ask SPSS to test a hypothesis
○ ⇒ SPSS output
→ Interpret results (reject H0 in favor of H1, or not)
In SPSS output, check the significance level of the test statistic (p-value)
If p-value < ⇒ reject H0 in favor of H1.

Hypothesis test: example 1
One-sided test
Statement: “More than half of the students pass their statistics exam”

Hypotheses:


(is the proportion of students who pass significantly higher than 50%?)

→ We have data on a sample of 50 students

T-distribution:




SPSS output:




4

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper axel_temmerman. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €15,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 65507 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€15,49
  • (0)
In winkelwagen
Toegevoegd