Machine learning
BUSINESS ENGINEERING – FINANCIAL
ENGINEERING
2024-2025
Data Science Challenge: 5
Exam: 15
- Multiple choice
➢ No guessing correction
➢ Censure: if 5 answers per question, you need to answer 60% correct to pass the multiple
choice part
➢ So answer all questions
➢ Details on the exam
- Open question
,Inhoudsopgave
LECTURE 1 – WHAT IS DATA SCIENCE AND MACHINE LEARNING? ....................................................................... 4
1 INTRODUCTION ............................................................................................................................................................................. 4
2 TERMINOLOGY.............................................................................................................................................................................. 4
2.1 Artificial Intelligence ........................................................................................................................................................... 5
2.2 Machine Learning ............................................................................................................................................................... 5
3 DATA SCIENTIST ........................................................................................................................................................................... 7
3.1 Importance ........................................................................................................................................................................... 7
3.2 Roles and skills .................................................................................................................................................................... 7
LECTURE 2 – MACHINE LEARNING .......................................................................................................................... 8
1 EXPLAINING VERSUS PREDICTING MODELLING ............................................................................................................................... 8
2 DATA PREPROCESSING ................................................................................................................................................................. 10
2.1 Sampling .............................................................................................................................................................................. 10
2.2 Encoding .............................................................................................................................................................................. 11
2.3 Missing values .................................................................................................................................................................... 12
2.4 Outliers ............................................................................................................................................................................... 12
2.5 Normalizing ........................................................................................................................................................................ 13
2.6 Discretization .................................................................................................................................................................... 14
3 SOME NOTES ABOUT CHATGPT ................................................................................................................................................... 14
LECTURE 3 – INTRODUCTION TO PREDICTIVE MODELING ............................................................................... 16
1. TERMINOLOGY ............................................................................................................................................................................ 16
2. FINDING INFORMATIVE VARIABLES FROM THE DATA ................................................................................................................... 17
3. DECISION TREES.......................................................................................................................................................................... 17
4. METHOLOGY OF DECISION TREES IN MORE DETAIL ..................................................................................................................... 18
5. OVERFITTING AND ITS AVOIDANCE ........................................................................................................................................... 20
5.1 Overfitting .......................................................................................................................................................................... 20
5.2 Avoidance ........................................................................................................................................................................... 21
5.3 Bias/ variance trade-off .....................................................................................................................................................22
LECTURE 4 – ASSESSING AND VISUALIZING MODEL PERFORMANCE ................................................................ 23
1. EVALUATING CLASSIFIERS ............................................................................................................................................................23
1.1 Accuracy .............................................................................................................................................................................. 23
1.2 Confusion matrix ................................................................................................................................................................ 23
1.3 Problems: unbalanced classes ............................................................................................................................................ 23
1.4 Problems: unequal costs and benefits .............................................................................................................................. 24
2. EXPECTED VALUE ....................................................................................................................................................................... 24
2.1 Expected Value for classifier evaluation .......................................................................................................................... 24
3. EVALUATION AND BASELINE PERFORMANCE .............................................................................................................................. 26
LECTURE 5 - LEVERAGING DATA SCIENCE: BUSINESS INSIGHTS, MODEL PERFORMANCE, AND EVIDENCE-
BASED DECISION MAKING .................................................................................................................................... 28
1 DECISION ANALYTIC THINKING I: WHAT IS A GOOD MODEL? (RECAP) ...................................................................................... 28
1.1 What is a Good Model? ...................................................................................................................................................... 28
1.2 Key concepts ...................................................................................................................................................................... 28
1.2.1 Positive and negatives ..................................................................................................................................................... 28
1.2.2 Accuracy .......................................................................................................................................................................... 28
1.2.3 The confusion matrix...................................................................................................................................................... 29
1.2.4 Cost- Benefit matrix ....................................................................................................................................................... 29
1.2.5 Expected Profit/ Value .................................................................................................................................................... 29
1.2.6 What is a good baseline?................................................................................................................................................ 29
2 VISUALIZING MODEL PERFORMANCE ........................................................................................................................................... 29
2.1 Ranking Classifier .............................................................................................................................................................. 30
2.2 Profit Curve........................................................................................................................................................................ 30
PAGINA 1
, 2.3 ROC Curve ......................................................................................................................................................................... 30
2.4 AUC (Area Under Curve)................................................................................................................................................... 31
2.5 Lift Curve (Cumulative Response Curve) ......................................................................................................................... 31
3 EVIDENCE AND PROBABILITIES.................................................................................................................................................... 34
3.1 Evidence .............................................................................................................................................................................. 34
3.2 Joint Probabilities and Independence............................................................................................................................... 34
3.3 Bayes Rule .......................................................................................................................................................................... 34
3.4 Naive Bayes and Conditional Independence ................................................................................................................... 34
3.5 Evidence Lift .......................................................................................................................................................................35
LECTURE 6 – SIMILARITY, NEIGHBORS, AND CLUSTERS .................................................................................... 37
1. SIMILARITY (BETWEEN INSTANCES) .............................................................................................................................................37
2. DISTANCE AND SIMILARITY MEASURES .......................................................................................................................................37
2.1 Euclidean distance ..............................................................................................................................................................37
2.2 Manhattan distance ...........................................................................................................................................................37
2.3 Cosine similarity ................................................................................................................................................................37
2.4 Jaccard similarity .............................................................................................................................................................. 38
2.5 Hamming distance ............................................................................................................................................................ 38
2.6 Levenshtein distance ........................................................................................................................................................ 38
3. K-NEAREST NEIGHBORS ............................................................................................................................................................. 38
4. HIERARCHICAL CLUSTERING (DENDROGRAMS) ......................................................................................................................... 40
5. K-MEANS CLUSTERING .............................................................................................................................................................. 40
LECTURE 7 – RECOMMENDER SYSTEMS ............................................................................................................... 41
1. WHAT IS A RECOMMENDER SYSTEM? ........................................................................................................................................... 41
2. PROBLEM DEFINITION: EVALUATING A RECOMMENDATION ALGORITHM .................................................................................. 41
3. RECOMMENDATION ALGORITHMS: TWO PERSPECTIVES ........................................................................................................... 42
3.1 Baselines, Content-Based, Collaborative Filtering and Hybrid Algorithms (Data perspective) .............................. 42
3.1.1 Baseline ............................................................................................................................................................................ 42
3.1.2 Content-based ................................................................................................................................................................. 42
3.1.3 Collaborative filtering ..................................................................................................................................................... 43
3.2 Pointwise, Pairwise and Listwise Learning-to-Rank (Learning perspective) ............................................................ 44
3.2.1 Pointwise: learning-to-rank ........................................................................................................................................... 44
3.2.2 Pairwise: learning-to-rank ............................................................................................................................................. 44
3.2.3 Listwise: learning-to-rank.............................................................................................................................................. 44
4. UNDER THE HOOD: BUILDING A PERSONALIZED RECOMMENDER SYSTEM ................................................................................ 44
LECTURE 8 – TEXT MINING .................................................................................................................................... 45
1. TEXT MINING APPLICATIONS ..................................................................................................................................................... 45
1.1 Unstructured vs. Structured Data ..................................................................................................................................... 45
1.2 Text Preprocessing............................................................................................................................................................. 45
1.3 Terminology: Documents, Tokens and Terms, Corpus ................................................................................................... 46
1.4 Bag of Words ..................................................................................................................................................................... 46
1.5 TF-IDF (Term Frequency - Inverse Document Frequency) ............................................................................................. 47
1.6 N-gram ............................................................................................................................................................................... 48
1.7 Named Entity Recognition ................................................................................................................................................ 48
1.8 Topic Model ....................................................................................................................................................................... 48
1.9 Word Embedding ............................................................................................................................................................... 49
2. ASSOCIATION RULE MINING...................................................................................................................................................... 49
2.1 Item sets ............................................................................................................................................................................. 49
2.2 Frequent Item sets............................................................................................................................................................. 49
2.3 Association Rules .............................................................................................................................................................. 50
2.4 Support .............................................................................................................................................................................. 50
2.5 Confidence ......................................................................................................................................................................... 50
2.6 Association Rule Mining: Apriori Algorithm .................................................................................................................. 50
2.7 Lift .......................................................................................................................................................................................52
PAGINA 2
, LECTURE 9 – NEURAL NETWORKS AND DEEP LEARNING ................................................................................... 53
1. NEURAL NETWORKS....................................................................................................................................................................53
1.1 The Perceptron ....................................................................................................................................................................53
1.2 Activation Function ............................................................................................................................................................53
1.3 Multi-Layer Perceptron ..................................................................................................................................................... 54
1.4 Forward Pass .......................................................................................................................................................................55
1.5 Loss Function ..................................................................................................................................................................... 56
1.6 Backpropagation (Backward Pass) .................................................................................................................................. 56
1.7 Gradient Descent Algorithm ............................................................................................................................................. 56
1.8 Stochastic Gradient Descent ............................................................................................................................................ 56
2. DEEP LEARNING......................................................................................................................................................................... 57
2.1 Convolutional Neural Networks (CNNs) ..........................................................................................................................57
2.2 Recurrent Neural Networks (RNNs) ................................................................................................................................ 58
2.3 Autoencoders ..................................................................................................................................................................... 58
2.4 Transformers ..................................................................................................................................................................... 59
2.5 Foundation Models (Large Language Models) ............................................................................................................... 59
LECTURE 10 – ENSEMBLE METHODS SVM ............................................................................................................. 61
1. ENSEMBLE METHODS ................................................................................................................................................................... 61
1.1 Combine by consensus ........................................................................................................................................................ 61
1.1.1 Bagging .............................................................................................................................................................................. 61
1.1.2 Random Forests ............................................................................................................................................................... 62
1.2 Combine by learning .......................................................................................................................................................... 62
1.2.1 Boosting ........................................................................................................................................................................... 62
1.2.2 Stacking ........................................................................................................................................................................... 63
2. A BRIEF INTRO TO THE SUPPORT VECTOR MACHINE ................................................................................................................. 64
3. DATA SCIENCE ETHICS ............................................................................................................................................................... 66
3.1 Data gathering: Privacy, A/B Testing and Bias ............................................................................................................... 67
3.1.1 Privacy .............................................................................................................................................................................. 67
3.1.2 Experimentation ............................................................................................................................................................. 67
3.1.3 Bias................................................................................................................................................................................... 68
3.2 Data preprocessing: Proxies, Government Backdoors ................................................................................................... 68
3.3 Modeling: ZK Proofs, Discrimination .............................................................................................................................. 69
3.4 Model evaluation: explain ................................................................................................................................................ 69
3.5 Deployment: Unintended consequences .......................................................................................................................... 70
PAGINA 3
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
√ Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper josefienj03. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €6,96. Je zit daarna nergens aan vast.