100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Statistiek voor Bedrijfswetenschappen KULeuven Schakel Handelswetenschappen () €7,69
In winkelwagen

Samenvatting

Samenvatting Statistiek voor Bedrijfswetenschappen KULeuven Schakel Handelswetenschappen ()

2 beoordelingen
 254 keer bekeken  9 keer verkocht

Een samenvatting van Statistiek voor Bedrijfswetenschappen gebaseerd op Statistical Analytics for Small and Big Data. Alles wat besproken is in de les en de oefeningen die we hebben gemaakt. Verder ook nog extra notities. 17/20 in eerste zit

Laatste update van het document: 3 jaar geleden

Voorbeeld 5 van de 156  pagina's

  • 27 januari 2021
  • 29 juli 2021
  • 156
  • 2020/2021
  • Samenvatting
Alle documenten voor dit vak (17)

2  beoordelingen

review-writer-avatar

Door: NoahDL • 2 jaar geleden

Volledige samenvatting met veel voorbeelden en beschrijvingen van hoe de verschillende statistische methodes te gebruiken in de software. Bevat veel spelfouten en soms kleine zaken die niet correct zijn. Over het algemeen een goede samenvatting. Bedankt

review-writer-avatar

Door: samikshyag23 • 3 jaar geleden

avatar-seller
yentevdb1
Statistiek voor bedrijfswetenschappen


Table of Contents
TABLE OF CONTENTS ..................................................................................................................................... 1
HOOFDSTUK 1: INLEIDING ............................................................................................................................. 4
HOOFDSTUK 2: WAARSCHIJNLIJKHEIDSTHEORIE ............................................................................................ 4
DEFINITIE WAARSCHIJNLIJKHEID ................................................................................................................................. 4
SYSTEEM VAN JEFFREYS ........................................................................................................................................... 4
Theorem E ..................................................................................................................................................... 5
THEOREMA VAN BAYES ............................................................................................................................................ 5
Abstracte begrippen ...................................................................................................................................... 5
Sensitiviteit en specificiteit ............................................................................................................................ 6
MULTINOMIAL NAIVE BAYES CLASSIFIER ..................................................................................................................... 6
Interactie-effect............................................................................................................................................. 6
Zero waarschijnlijkheden............................................................................................................................... 7
Types Naive Bayes Classifiers ........................................................................................................................ 7
DE WET VAN DE GROTE GETALLEN ................................................................................................................ 7
HOOFDSTUK 3: WAARSCHIJNLIJKHEID VERDELINGEN .................................................................................... 8
DISCRETE VERDELINGEN ........................................................................................................................................... 8
R-module ....................................................................................................................................................... 8
CONTINUE VERDELINGEN ......................................................................................................................................... 9
R-module (parameter estimation)............................................................................................................... 10
Random Number Generator ........................................................................................................................ 11
Eigenschappen van de continue verdelingen .............................................................................................. 12
HOOFDSTUK 4: BESCHRIJVENDE STATISTIEKEN ............................................................................................ 13
TYPES VAN DATA .................................................................................................................................................. 13
QUALITATIVE DATA ............................................................................................................................................... 13
Frequentie plot ............................................................................................................................................ 13
Frequentietabel ........................................................................................................................................... 14
Contingency tabel........................................................................................................................................ 14
Binominale Classificatie Statistieken / Metrics ........................................................................................... 14
QUANTITATIEVE DATA ........................................................................................................................................... 15
Stem and leaf plot ....................................................................................................................................... 15
Histogram.................................................................................................................................................... 16
Kwantielen .................................................................................................................................................. 17
Centrale tendency maatstaven ................................................................................................................... 18
Variabiliteit (= risico) ................................................................................................................................... 20
Skweness en Kurtosis................................................................................................................................... 21
Notched boxplot .......................................................................................................................................... 22
Scatterplot ................................................................................................................................................... 23
Pearson correlatie ....................................................................................................................................... 24
Rangcorrelatie ............................................................................................................................................. 25
Lineaire regressie ........................................................................................................................................ 26
Quantile-Quantile plot ................................................................................................................................ 27
Probability plot correlatiecoëfficiënt plot (PPCC plot) ................................................................................. 28
Kernel Density Estimation ........................................................................................................................... 29
Bivariate Kernel Density Plot ....................................................................................................................... 30
Bootstrap plot (centrale tendency) ............................................................................................................. 30
Survey scores rank ....................................................................................................................................... 31
Cronbach Alpha ........................................................................................................................................... 32
QUANTITATIEVE DATA MET TIJDSREEKSEN .................................................................................................................. 32
Time series plot (run sequence plot)............................................................................................................ 33
Mean plot .................................................................................................................................................... 33
Blocked bootstrap plot (central tendency) .................................................................................................. 35

,Statistiek voor bedrijfswetenschappen


Standard deviation mean plot ..................................................................................................................... 35
Variantie reductie matrix ............................................................................................................................ 36
Autocorrelatie functie ................................................................................................................................. 38
Periodigram en cumulate periodigram ....................................................................................................... 40
HOOFDSTUK 5: TESTEN VAN HYPOTHESES ................................................................................................... 42
NORMALE VERDELING............................................................................................................................................ 42
Corollaries ................................................................................................................................................... 43
Normale model............................................................................................................................................ 44
THE CENTRAL LIMIT THEOREM (REVISITED) ................................................................................................................. 46
Statistical test of population Mean with known variance ........................................................................... 46
STATISTISCHE TEST VAN DE VARIANTIE (SPREIDING)...................................................................................................... 49
STATISTISCHE TEST VAN DE POPULATIE PROPORTIE ....................................................................................................... 49
STATISTISCHE TEST VAN HET VERSCHIL TUSSEN GEMIDDELDES (INDEPENDENT / UNAPAIRED SAMPLES).................................... 49
HYPOTHESE TESTEN VOOR ONDERZOEK IN DE PRAKTIJK ................................................................................................. 50
Analyse met p-waarde ................................................................................................................................ 50
Skweness en kurtosis ................................................................................................................................... 51
Paired two sample t -test ............................................................................................................................ 52
Wilcoxon Signed-Rank Test ......................................................................................................................... 53
Unpaired two sample t-test ........................................................................................................................ 54
Mann-Whitney U test .................................................................................................................................. 56
Analysis on p-values .................................................................................................................................... 57
Bayesian Two Sample test ........................................................................................................................... 57
Analysis based on posterior distribution ..................................................................................................... 57
Chi-squared tests for Count Data ................................................................................................................ 58
Exact pearson chi squared by simulation test ............................................................................................. 59
One way analysis of variance (ANOVA) ....................................................................................................... 60
Two way analysis ANOVA............................................................................................................................ 63
Testing correlations ..................................................................................................................................... 65
Causality ...................................................................................................................................................... 70
HOOFDSTUK 6: REGRESSION MODELS ......................................................................................................... 71
SIMPLE LINEAR REGRESSION MODEL ........................................................................................................................ 71
Ordinary Least Squares for Simple Linear Regression ................................................................................. 71
Statistical Inference With Ordinary Least Squares ...................................................................................... 72
MULTIPLE LINEAR REGRESSION MODEL .................................................................................................................... 74
Oridnary Least Squares for Multiple Linear Regression .............................................................................. 74
Unbiasedness of B ....................................................................................................................................... 75
Minimum Variance (Gauss-Markox Theorem) ............................................................................................ 75
Determinatie coëfficiënt (R2) ....................................................................................................................... 75
Relationship between SLRM and MLRM ..................................................................................................... 75
HYPOTHESIS TESTING WITH LINEAR REGRESSION MODEL (PRATISCH) ............................................................................. 76
On the relationship between linear regression models and ANOVA ........................................................... 76
Testing regression model assumptions ....................................................................................................... 78
Testing Regression Model Assumptions ...................................................................................................... 78
Testing Regression Coefficients ................................................................................................................... 79
Testting Regression Model Assumptions..................................................................................................... 81
HOOFDSTUK 7: INTRODUCTION TO TIME SERIES ANALYSIS.......................................................................... 92
INTRODUCTION .................................................................................................................................................... 92
DECOMPOSTITION OF TIME SERIES ........................................................................................................................... 93
Classical Decomposition of Time Series by Moving Averages ..................................................................... 93
Seasonal Decomposition of Time Series by Loess ........................................................................................ 95
Decomposition by Structural Time Series Models ....................................................................................... 96
AD HOC FORECASTING OF TIME SERIES ..................................................................................................................... 96
Regressie analysis of time series ................................................................................................................. 97
Smoothing Model ...................................................................................................................................... 102

,Statistiek voor bedrijfswetenschappen


HOOFDSTUK 8: UNIVARIATE BOX-JENKINS ANALYSIS ................................................................................ 115
DATA ............................................................................................................................................................... 115
THEORETICAL CONCEPTS ...................................................................................................................................... 115
Stationary Process ..................................................................................................................................... 115
STATIONARITY .................................................................................................................................................... 116
Stationarity in the mean............................................................................................................................ 116
VRM (Variance Reduction Matrix)............................................................................................................. 118
Stationarity in the variance ....................................................................................................................... 119
Transformation of time series ................................................................................................................... 119
Standard deviation mean plot ................................................................................................................... 119
Box-Cox Normality Plot ............................................................................................................................. 122
Why do we need stationary ...................................................................................................................... 123
IDENTIFYING ARMA-PARAMETERS ........................................................................................................................ 123
AR Model ................................................................................................................................................... 123
AR 2 model ................................................................................................................................................ 124
MA 1 proces .............................................................................................................................................. 125
MA 2 proces .............................................................................................................................................. 125
AR P proces................................................................................................................................................ 125
MA(q) proces ............................................................................................................................................. 125
ARIMA-MODEL ................................................................................................................................................. 126
OEFENSESSIE ............................................................................................................................................. 135
PROEFEXAMEN.......................................................................................................................................... 153
EXAMENVOORBEREIDING ......................................................................................................................... 155

,Statistiek voor bedrijfswetenschappen


Hoofdstuk 1: Inleiding
Het verloop van het examen:
- Geen puur theoretische vragen (eigenschappen en bewijzen) op het examen, maar
je hebt de theorie wel nodig om oefeningen te maken

Het boek:
- Mogelijkheid om data aan te passen of te reproduceren wanneer je op de link klinkt
onder een voorbeeld – dit is handig wanneer je een oefening wilt maken, maar het
niet echt lukt. Je kan de oefening bloggen en doorsturen naar de Mr. Wessa en zo
kan hij zien wat je fout doet

Hoofdstuk 1:
- 1.3, 1.5 en 1.8 te schrappen
Hoofdstuk 2: Waarschijnlijkheidstheorie
Definitie waarschijnlijkheid
In de literatuur betekent waarschijnlijkheid: de maten waarin we vertrouwen hebben in een
stelling die we vooropstellen (Jeffreys’) – in welke mate heb je vertrouwen in een bepaalde
uitspraak

Afspraken van de waarschijnlijkheidstheorie (ofwel gebeurt het ofwel niet)
- De kans van een gebeurtenis voorkomt moet gelegen zijn tussen 0 en 1
- De kans dat de gebeurtenis niet voorkomt = 1 – de kans dat de gebeurtenis wel
voorkomt

Doorsnedes versus unies
Een doorsnede (Ç) – en: 2 verzamelingen die onafhankelijk van elkaar kunnen bestaan en
waarbij de gebeurtenissen beide moeten gelden
- Voorbeeld: het regent en de zon schijnt è je moet de waarschijnlijkheden
vermenigvuldigen

Een uni (È) – of: 2 verzamelingen waarbij een van de twee gebeurtenissen geldt
- Voorbeeld: regent het of schijnt de zon (beide kunnen niet gebeuren) è je moet de
waarschijnlijkheden optellen

Systeem van Jeffreys
Er zijn 2 soorten waarschijnlijkheden waarbij de waarschijnlijkheid die het meest voorkomt

- : de waarschijnlijkheid dat C waar is gegeven dat X waar is

Wanneer is P(C/X) = P(C)?
- Als C en X onafhankelijk zijn van elkaar
- De waarschijnlijkheden zijn ongelijk als X een invloed heeft op C

Verticale streep symbool: conditionele waarschijnlijk, gegeven dat – wat is de
waarschijnlijkheid dat de voorspelde gebeurtenis werkelijk gebeurt
- Voorbeeld: het weerbericht van gisteren heeft voorspelt dat het vandaag gaat
regenen en het regent vandaag

Volgens Jeffreys moeten waarschijnlijkheden (meestal) conditioneel uitgedrukt worden
omdat dit meer zinvol is
- Als er een onderzoek gebeurt, gebeurt dit vaak omdat er al voorkennis is
o Je kent een aantal gegevens en weet bepaalde feiten
o Je wilt conclusies trekken over iets anders gegeven dat je de feiten kent

, Statistiek voor bedrijfswetenschappen


Theorem E
Waarschijnlijkheden moeten soms opgeteld worden en soms vermenigvuldigen
- A en B zijn onafhankelijk van elkaar en je wilt een kans hebben tussen A of B dan
moet je het optellen (= uni)
- A en B zijn onafhankelijk van elkaar en je wilt een kans hebben tussen A en B dan
moet je vermenigvuldigen (= doorsnede)

Theorema van Bayes
Bayes Theorem is een tak in de statistiek die puur gebaseerd is op de stelling van Bayes
- Een conditionele waarschijnlijkheid = een verhouding van 2 waarschijnlijkheden
o De waarschijnlijkheid van AB / de waarschijnlijkheid van B
o De waarschijnlijkheid van BA / de waarschijnlijkheid van A
è De waarschijnlijkheid BA * A / de waarschijnlijkheid van B
- De waarschijnlijkheid van A gegeven B altijd geschreven kan worden door de
waarschijnlijkheid als B gegeven A

Abstracte begrippen
- H: hypothese die we willen bewijzen
- D: data

Wat is de kans dat we bepaalde hypothese die we willen bewijzen waar is,
gegeven dat we bepaalde data daarover hebben
Berekening om te weten of de hypothese waar is gegeven de data
- Hoe waarschijnlijk is het dat de data geobserveerd wordt indien de hypothese waar
is * de apriori waarschijnlijkheid dat de hypothese waar is



- P(H/D): aposteriori waarschijnlijkheid
- P(D/H): likelihood waarschijnlijkheid
- P(H): apriori waarschijnlijkheid

Berekening om juiste hypothese te vinden van 2 hypotheses
- De uitdrukking 2 keer schrijven en delen door elkaar

De verhouding van de aposterio waarschijnlijkheid = de verhouding van
likelihood * de verhouding van de apriori waarschijnlijkheid

Voorbeeld:
- Er zijn 2 zakken met muntstukken (gouden en zilveren muntstukken door elkaar)
o Zak 1 = hypothese 1
§ Meer goud dan zilver (150 goud en 50 zilver)
o Zak 2 = hypothese 2 (100 goud en 300 zilver)
§ Meer zilver dan goud

Wat is de kans dat je een goud muntstuk uit de eerste zak pakt – de kans is groter dat het
goudstuk uit de eerste zak komt omdat daar meer goudstukken inzitten – maar hoe groot is
die kans in cijfers exact?
- Apriori waarschijnlijkheid: we geven de zakken even veel kans nl. 50% -> je hebt
50% kans dat je uit zak 1 iets pakt
- De vergelijking gaat als volgt: 150/50 * ½ = 9/4
100/300 * ½
- De kans is groter dat het uit de eerste zak komt omdat 9 groter is dan 4
- 9+4 = 13 è 9/13 kans

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper yentevdb1. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,69. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 53340 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,69  9x  verkocht
  • (2)
In winkelwagen
Toegevoegd