100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Data Science and ethics (2104TEWDAS) €5,49   In winkelwagen

Samenvatting

Samenvatting Data Science and ethics (2104TEWDAS)

2 beoordelingen
 288 keer bekeken  31 keer verkocht

Samenvatting van de hoorcolleges Data Science and Ethics. Met deze samenvatting haalde ik 18/20.

Voorbeeld 4 van de 121  pagina's

  • 11 februari 2021
  • 121
  • 2020/2021
  • Samenvatting
Alle documenten voor dit vak (2)

2  beoordelingen

review-writer-avatar

Door: ranhuyse • 1 jaar geleden

only the slides

review-writer-avatar

Door: MichielThys15 • 1 jaar geleden

avatar-seller
studentam1
Data science and ethics
Inhoud
Inleiding .................................................................................................................................. 6
Course and Evaluation........................................................................................................ 6
Why care? ........................................................................................................................... 6
1. Expected from society ............................................................................................................. 6
2. Huge potential risks ................................................................................................................. 6
3. Potential benefits .................................................................................................................... 7
4. Future ...................................................................................................................................... 7
5. SciFi becomes Sci ..................................................................................................................... 7
Goal of the course .................................................................................................................. 8
Ethics in the News................................................................................................................... 8
Data science ethics ................................................................................................................. 8
Trolley Problem .................................................................................................................. 9
Ethics of self-driving cars .................................................................................................... 9
Data, Algorithms and Models........................................................................................... 10
Different Roles.................................................................................................................. 11
FAT ........................................................................................................................................ 11
FAT Flow: a Data Science Ethics Framework .................................................................... 12
FAT Flow: Concepts and Techniques ................................................................................ 13
FAT Flow: Cautionary Tales .............................................................................................. 13
Subjectivity of ethics ........................................................................................................ 13
Discussion Case 1....................................................................................................................... 14
Fair Data Gathering .......................................................................................................... 14
Transparent Data Gathering............................................................................................. 14
Discussion Case 2....................................................................................................................... 14
Fair Data Preparation ....................................................................................................... 15
Transparent Data Preparation ......................................................................................... 15
Fair Data Modelling .......................................................................................................... 15
Transparant Data Modeling ............................................................................................. 15
Fair Model Evaluation ...................................................................................................... 15
Transparent Model Evaluation ......................................................................................... 16
Fair Model Deployment ................................................................................................... 16
Transparent Model Deployment ...................................................................................... 16
Beyond Data Science Ethics .................................................................................................. 16

1

, Ethical AI Frameworks .......................................................................................................... 16
IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems (2018) ............ 16
Ethics guidelines for trustworthy AI (2019) ..................................................................... 17
White House Executive Order on Maintaining American Leadership in Artificial
Intelligence, Feb. 2019 ..................................................................................................... 17
ISO .................................................................................................................................... 17
Discussion Case 3....................................................................................................................... 17
Ethical Data Gathering ............................................................................................................. 18
Privacy and GDPR ................................................................................................................. 18
Privacy .............................................................................................................................. 18
GDPR ................................................................................................................................. 20
GDPR key concepts .................................................................................................................... 20
Discussion Case 1....................................................................................................................... 24
CIA ......................................................................................................................................... 24
Privacy Mechanisms: Encryption and hashing ..................................................................... 24
Symmetric encryption ...................................................................................................... 26
Asymmetric encryption .................................................................................................... 26
Encryption for data protection......................................................................................... 28
Hashing ............................................................................................................................. 29
Quantum Computing ........................................................................................................ 32
Obfuscation ...................................................................................................................... 33
Government Backdoor ......................................................................................................... 33
Public data ............................................................................................................................ 35
Clearview.AI...................................................................................................................... 36
Bias ........................................................................................................................................ 36
Sample Bias ...................................................................................................................... 37
Experimentation ................................................................................................................... 39
Summary data gathering ...................................................................................................... 41
Ethical Data Preprocessing ....................................................................................................... 41
Input Selection ................................................................................................................. 41
Discrimination against sensitive groups: Data Preprocessing for non-discrimination ........ 42
Measuring ......................................................................................................................... 42
Proxies for discrimination.......................................................................................................... 42
Methods ........................................................................................................................... 43
1. Massaging: Relabeling ........................................................................................................... 43
2. Reweighing ............................................................................................................................ 45

2

, 3. Sampling ................................................................................................................................ 47
Experiments ............................................................................................................................... 47
Conclusions................................................................................................................................ 48
Privacy ................................................................................................................................... 49
Defining Target Variable................................................................................................... 49
Measuring Fairness (Revisited) ........................................................................................ 49
COMPAS case............................................................................................................................. 50
Methods to include privacy .............................................................................................. 50
Anonymizing Data ..................................................................................................................... 50
Online Re-identificaiton ................................................................................................... 53
Conclusion: ....................................................................................................................... 55
Data Preprocessing and Modelling: Privacy ............................................................................. 55
Data preprocessing ............................................................................................................... 55
K-anonymity ..................................................................................................................... 55
Recap k-anonymity .................................................................................................................... 55
L-diversity ......................................................................................................................... 56
T-closeness ....................................................................................................................... 58
Differential privacy ........................................................................................................... 59
Privacy loss parameter ε............................................................................................................ 62
How do we add this noise? ....................................................................................................... 63
Assumption 1: Single Count Query. Needed? ........................................................................... 64
Assumption 2: trusted data curator .......................................................................................... 66
Conclusion ........................................................................................................................ 68
Ethical Modelling: Including Privacy and Preferences ............................................................. 69
Including Privacy ................................................................................................................... 69
Differential Privacy ........................................................................................................... 69
Zero Knowledge Proofs .................................................................................................... 69
Homomorphic Encryption ................................................................................................ 70
Secure Multi Party Communication ................................................................................. 72
Applications ............................................................................................................................... 74
Federated Learning .......................................................................................................... 75
Federated Averaging ................................................................................................................. 76
Applications ............................................................................................................................... 77
Overview........................................................................................................................... 77
Including Preferences ........................................................................................................... 78


3

, Including domain knowledge: monotonicity constraints................................................. 78
Trolley problem ................................................................................................................ 79
Including Ethical Preferences .................................................................................................... 79
Ethical Modelling: Including fairness and Explainable AI ......................................................... 81
Fairness in modeling stage: measures and methods ........................................................... 81
Measures .......................................................................................................................... 81
Measuring fairness of Y’ ............................................................................................................ 81
Methods ........................................................................................................................... 83
COMPAS ........................................................................................................................... 83
Including Fairness in Modeling ......................................................................................... 84
Explainable AI ....................................................................................................................... 85
Why need for explanations .............................................................................................. 85
Trust........................................................................................................................................... 85
Compliance ................................................................................................................................ 87
Insight ........................................................................................................................................ 87
Improve ..................................................................................................................................... 87
Comprehensible and Explaining ....................................................................................... 88
Global and instance-based explanation methods............................................................ 89
Explanations .............................................................................................................................. 89
ANN/SVM Rule Extraction ......................................................................................................... 90
SVM Rule Extraction .................................................................................................................. 91
Linear Models ............................................................................................................................ 93
Instance-based explanations ..................................................................................................... 93
Advantages ................................................................................................................................ 97
Challenges ................................................................................................................................. 98
Conclusion ................................................................................................................................. 98
Ethical Reporting ...................................................................................................................... 98
Ethical Reporting .............................................................................................................. 98
p-Hacking ................................................................................................................................... 99
Multiple comparisons .............................................................................................................. 100
Case 1: Twitter to predict stock market .................................................................................. 101
Case 2: Reporting in credit scoring .......................................................................................... 103
Introduction to validation ....................................................................................................... 103
Quantitative validation ............................................................................................................ 104
Qualitative validation .............................................................................................................. 108
The advertising technology industry .............................................................................. 108
4

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper studentam1. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €5,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 67474 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€5,49  31x  verkocht
  • (2)
  Kopen