Chapter 4: Colloidal Interactions
Hydrogen bonding
- Hydrogen atoms are bound to strongly electronegative atoms (N,O,F,Cl)
- NOT a covalent bond
- Much weaker than covalent bonds but stronger than most Van der Waal’s interactions
- Short-range interaction with and effective range less than 0.2nm
- Strength of the hydrogen bond depends strongly on the orientation of the molecules;
therefore, temperature dependent
o When the temperature increases the thermal motion will disturb the preferred
orientation thereby weakening the bond
- Can produce inter- and intramolecular bonds, allows it to form networks or 3D-structures
o Examples: α-helix and β-sheet
- Double helix formed by DNA is stabilized by hydrogen bonding
o Since strength of interaction is temperature dependent, formation and stability of
these structures is also temperature dependent
Hydrophobic interactions
- Closely related to hydrogen bonding
- Effective range around 2nm
- Temperature dependent
o Temperature increases, strength of the interaction INCREASES
- When a non-polar molecule is dispersed in a water phase the network formed by the water
dipoles will be locally disturbed
- The water dipoles surrounding the non-polar molecules cannot form hydrogen bonds with
the non-polar molecule, resulting in a loss of hydrogen bond energy
- To compensate, the water dipoles at the surface of the non-polar molecule reorient
themselves to restore the number of hydrogen bonds
- In doing so they form and cage structure around the non-polar molecule
- The size and shape of the cage are determined by the size of the non-polar molecule
- By forming the cage, the number of hydrogen bonds is restored, and the enthalpy of the
system is lowered
o Dipoles lose some translational and rotational entropy because they are in a state
with a higher degree of order
o Therefore, cage formation in entropically unfavourable
The Gibb’s free energy of the cage formation is given by;
Δ𝐺 = Δ𝐻 − 𝑇Δ𝑆
Change in enthalpy is negative, hydrogen bonds are being restored
Change in entropy is negative, cage has a higher degree of order
o For most non-polar particles; |Δ𝐻| ≤ |TΔ𝑆|
o Therefore; Δ𝐺 ≥ 0 (not spontaneous)
o Explains why non-polar molecules are so poorly soluble in water
, - When two non-polar particles approach each other to a short distance the system can
increase its entropy (less order) by removing parts of the cages between the 2 non-polar
particles, building a new cage containing both particles
- System can lower its Gibb’s free energy by this process
- This leads to an attractive interaction between the non-polar particles, which, when not
balanced by repulsive interactions will lead to aggregation
Electrostatic interactions on the colloidal scale
- Important in the stability of emulsions stabilized by proteins, or production of yoghurt
through acidification of milk
- Colloidal particles can be charged in many ways
o Dissociation/association of acid and base groups at the surface of the particles.
Degree of dissociation/association depends on the pH of the solution
o The charge and therefore the strength of the interaction is dependent on the pH
o Colloidal particles can also be charged by the adsorption of charged particles to the
surface
- When a colloidal particle is charged the charges at the particle surface will interact with the
electrolyte ions in the surrounding medium
o You cannot disperse charged particles in water. You need ions in solution.
- Counter-ions: charge of ions in medium are opposite to the particle charge (+ -)
- Co-ions: charge of ions in medium is the same as particle charge (++ or - - )
- Counter ions will be attracted by the particle and the co-ions will be repelled
- When the attractive interactions between the particle and the counter ions are sufficiently
strong and ordered layer of counter ions will form, bound to the particle surface.
o Stern or Helmholtz layer
- Outside this layer the interactions are weaker
- Balance between thermal motion and electrostatic interactions results in formation of a
diffuse electric double layer
Debye screening length
𝜀𝑟 𝜀𝑜 𝑘𝐵 𝑇
𝑘 −1 = √ [𝑚]
2𝑧 2 𝑒 2 𝑛𝑏
- The characteristic dimension for the thickness of the diffuse double layer
𝐶
The potential at the wall is related to the surface charge density 𝜎 [𝑚2] of the wall
- When the surface potential is sufficiently low ( <25 mV)
𝜎
𝜓𝑠 =
𝜀𝑟 𝜀0 𝜅
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper Alisongeorgala. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €3,49. Je zit daarna nergens aan vast.