100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Extensive Summary of Lecture 1 and 2 for Statistical Learning in Marketing (EBM214A05)

Beoordeling
-
Verkocht
-
Pagina's
31
Geüpload op
06-02-2023
Geschreven in
2022/2023

Extensive Summary of Lecture 1 and 2 for Statistical Learning in Marketing (EBM214A05), including complete R introduction, guide and function cheat sheets, in-depth summary of lecture 2 and R-code interpretation. Check out the complete summary bundle for the best value.

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
6 februari 2023
Aantal pagina's
31
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

MADS MADLAD |4


Table of Contents
Week 1 (Lecture 1)........................................................................................... 10
Lecture 1 – Intro to R + Intermediate R ......................................................... 10
Introduction to R: Variables, Vectors, Matrices, Factors, Data Frames and
Lists............................................................................................................ 10
Variables .............................................................................................. 10
Vectors ................................................................................................. 10
Matrices ............................................................................................... 10
Factors ................................................................................................. 11
Data Frames (DF).................................................................................. 11
Lists ...................................................................................................... 12
Intermediate R: Conditionals, Control flow, Loops, Functions, Apply family,
Utilities. ..................................................................................................... 12
Conditionals and Control Flow ............................................................. 12
- Relational operators ................................................................... 12
- Logical operators ........................................................................ 13
- Conditional Statements .............................................................. 13
Loops.................................................................................................... 14
- While loops ................................................................................ 14
- For loops .................................................................................... 14
Functions.............................................................................................. 15
Apply family ......................................................................................... 16
- Lapply ......................................................................................... 16
- Sapply ......................................................................................... 16
- Vapply ........................................................................................ 17
Utilities ................................................................................................. 17
- Data utilities ............................................................................... 18
- Importing Data in R .................................................................... 19
Week 2 (Lecture 2)........................................................................................... 20
Lecture 2 – Reducing data complexity .......................................................... 20

, MADS MADLAD |5


Concepts in this lecture: ............................................................................ 20
Principal Component Analysis .................................................................... 20
Sequence of action in PCA .................................................................... 20
Terminology ......................................................................................... 23
In Practice – How to in R: ..................................................................... 23
Exploratory Factor Analysis (EFA) .............................................................. 25
Sequence of action in EFA .................................................................... 25
Estimation process ............................................................................... 26
In Practice – How to in R: ..................................................................... 28
Multidimensional scaling (MDS) ................................................................ 32
In Practice – How to in R: ..................................................................... 33
Final Remarks: ........................................................................................... 34
Week 3 (Lecture 3)........................................................................................... 35
Lecture 3 – General linear model, part A: Introduction/ANOVA/ANCOVA .... 35
Assumptions to be satisfied for OLS: .................................................... 37
Goodness of fit (R2) .............................................................................. 37
Interpreting Adjusted-R2 ................................................................ 37
Other Goodness of Fit Indices .............................................................. 38
Statistical Inference.............................................................................. 38
Possible reasons for insignificance ....................................................... 39
In Practice (the case) – How to in R: ..................................................... 40
ANOVA....................................................................................................... 45
Full vs. Reduced model .............................................................................. 47
In Practice – How to in R (continued): .................................................. 47
ANCOVA..................................................................................................... 48
Homogeneity of regression slopes ....................................................... 49
In practice – How to in R (continued): .................................................. 51
Week 4 (Lecture 4)........................................................................................... 52
Lecture 4 – General linear model, part B: Multiple Regression ..................... 52
Multiple Linear Regression ........................................................................ 52

, MADS MADLAD |6


Interpretation: variable transformations.............................................. 52
Judging the impact of variables ............................................................ 53
Standardized coefficients ..................................................................... 54
Multicollinearity ........................................................................................ 54
Indications of multicollinearity: How to test for it? .............................. 55
Variance Inflation Factors & Tolerance ................................................ 55
Solutions for Multicollinearity: ............................................................. 56
Dummy Variable Trap ................................................................................ 56
Moderation Effects .................................................................................... 58
Types of Moderation Effects ................................................................ 58
Types of Moderator Variables .............................................................. 58
Interpreting Moderation Effects........................................................... 59
Rescaling of Variables ................................................................................ 59
Is the presence of multicollinearity always a problem? ............................. 60
Good Practices ........................................................................................... 60
In Practice – How to in R: ..................................................................... 61
Week 5 (Lecture 5 and 6) ................................................................................. 66
Lecture 5 – Modern Time Series Analysis, part A .......................................... 66
2 Types of Time Series ............................................................................... 66
6 Methodological Steps ............................................................................. 67
In Practice – How to in R (pre- 6 Methodological Steps above): ........... 67
1. Granger causality ................................................................................... 69
How many lags to include?................................................................... 69
Back to Practice – How to in R (1. Granger Causality):.......................... 70
2. Unit Root and Cointegration Tests ......................................................... 71
Autoregressive process ........................................................................ 71

Role of (phy) .................................................................................. 72
Stationarity .......................................................................................... 73
Condition for Stationarity: ................................................................ 73

, MADS MADLAD |7


Cointegration ....................................................................................... 74
Testing for Cointegration.................................................................. 75
Back to Practice – How to in R:............................................................. 76
Cointegration in Marketing .................................................................. 80
4 long-term scenarios ....................................................................... 80
VAR (Vector Autoregressive) Model .......................................................... 81
Lecture 6 – Modern Time Series Analysis, part B .......................................... 82
VAR ............................................................................................................ 82
3 Forms of VAR models ........................................................................ 82
Structural VAR (SVAR) ...................................................................... 82
Reduced-form VAR ........................................................................... 83
In Practice – How to in R ...................................................................... 83
Endogenous vs. Exogenous (1) ................................................................... 84
Types of Exogeneity ............................................................................. 84
Lag Selection (2)......................................................................................... 85
Lag Selection (continued) .......................................................................... 87
Symmetry vs. Asymmetries .................................................................. 87
Dealing with (non-)stationarity ............................................................ 87
Vector Error Correction (VEC) .................................................................... 88
Seasonality in VAR/VEC ........................................................................ 88
IRF.............................................................................................................. 90
Parameter numerosity ......................................................................... 90
Back to Practice – How to in R:............................................................. 91
Back to Practice – How to in R (IRF):..................................................... 93
FEVD: Forecast Error Variance Decomposition .......................................... 97
Week 6 (Lecture 7)........................................................................................... 99
Lecture 7 – Cluster Analysis .......................................................................... 99
Cluster Analysis: Introduction .................................................................... 99
Steps to Cluster Analysis .......................................................................... 100
Step 1: Define the Research Purpose ................................................. 100

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
madsmadlad Rijksuniversiteit Groningen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
36
Lid sinds
3 jaar
Aantal volgers
12
Documenten
0
Laatst verkocht
1 week geleden
MADS Madlad

My name is George, aka the MADS Madlad. I write premium study materials for the MSc Marketing Analytics and Data Science, that help you get good grades and help people in need. Namely, 100% of the profits made from my summaries are donated to local NGO's in Groningen, as well as national ones in the whole Netherlands. The list includes: - Dutch Cancer Society - Voedselbanken Groningen - AidsFonds - Alzheimer Nederland - LGBT+ Asylum Support - SIAN (Stichting Inclusive Action North, which includes Queer Pride Groningen, Groningen Feminist Network, Black Ladies of Groningen and asterisk).

Lees meer Lees minder
4,0

3 beoordelingen

5
1
4
1
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen