100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Extensive Summary of Lecture 1 and 2 for Statistical Learning in Marketing (EBM214A05) €4,99
In winkelwagen

Samenvatting

Extensive Summary of Lecture 1 and 2 for Statistical Learning in Marketing (EBM214A05)

 8 keer bekeken  0 keer verkocht

Extensive Summary of Lecture 1 and 2 for Statistical Learning in Marketing (EBM214A05), including complete R introduction, guide and function cheat sheets, in-depth summary of lecture 2 and R-code interpretation. Check out the complete summary bundle for the best value.

Voorbeeld 4 van de 31  pagina's

  • 6 februari 2023
  • 31
  • 2022/2023
  • Samenvatting
Alle documenten voor dit vak (3)
avatar-seller
madsmadlad
MADS MADLAD |4


Table of Contents
Week 1 (Lecture 1)........................................................................................... 10
Lecture 1 – Intro to R + Intermediate R ......................................................... 10
Introduction to R: Variables, Vectors, Matrices, Factors, Data Frames and
Lists............................................................................................................ 10
Variables .............................................................................................. 10
Vectors ................................................................................................. 10
Matrices ............................................................................................... 10
Factors ................................................................................................. 11
Data Frames (DF).................................................................................. 11
Lists ...................................................................................................... 12
Intermediate R: Conditionals, Control flow, Loops, Functions, Apply family,
Utilities. ..................................................................................................... 12
Conditionals and Control Flow ............................................................. 12
- Relational operators ................................................................... 12
- Logical operators ........................................................................ 13
- Conditional Statements .............................................................. 13
Loops.................................................................................................... 14
- While loops ................................................................................ 14
- For loops .................................................................................... 14
Functions.............................................................................................. 15
Apply family ......................................................................................... 16
- Lapply ......................................................................................... 16
- Sapply ......................................................................................... 16
- Vapply ........................................................................................ 17
Utilities ................................................................................................. 17
- Data utilities ............................................................................... 18
- Importing Data in R .................................................................... 19
Week 2 (Lecture 2)........................................................................................... 20
Lecture 2 – Reducing data complexity .......................................................... 20

, MADS MADLAD |5


Concepts in this lecture: ............................................................................ 20
Principal Component Analysis .................................................................... 20
Sequence of action in PCA .................................................................... 20
Terminology ......................................................................................... 23
In Practice – How to in R: ..................................................................... 23
Exploratory Factor Analysis (EFA) .............................................................. 25
Sequence of action in EFA .................................................................... 25
Estimation process ............................................................................... 26
In Practice – How to in R: ..................................................................... 28
Multidimensional scaling (MDS) ................................................................ 32
In Practice – How to in R: ..................................................................... 33
Final Remarks: ........................................................................................... 34
Week 3 (Lecture 3)........................................................................................... 35
Lecture 3 – General linear model, part A: Introduction/ANOVA/ANCOVA .... 35
Assumptions to be satisfied for OLS: .................................................... 37
Goodness of fit (R2) .............................................................................. 37
Interpreting Adjusted-R2 ................................................................ 37
Other Goodness of Fit Indices .............................................................. 38
Statistical Inference.............................................................................. 38
Possible reasons for insignificance ....................................................... 39
In Practice (the case) – How to in R: ..................................................... 40
ANOVA....................................................................................................... 45
Full vs. Reduced model .............................................................................. 47
In Practice – How to in R (continued): .................................................. 47
ANCOVA..................................................................................................... 48
Homogeneity of regression slopes ....................................................... 49
In practice – How to in R (continued): .................................................. 51
Week 4 (Lecture 4)........................................................................................... 52
Lecture 4 – General linear model, part B: Multiple Regression ..................... 52
Multiple Linear Regression ........................................................................ 52

, MADS MADLAD |6


Interpretation: variable transformations.............................................. 52
Judging the impact of variables ............................................................ 53
Standardized coefficients ..................................................................... 54
Multicollinearity ........................................................................................ 54
Indications of multicollinearity: How to test for it? .............................. 55
Variance Inflation Factors & Tolerance ................................................ 55
Solutions for Multicollinearity: ............................................................. 56
Dummy Variable Trap ................................................................................ 56
Moderation Effects .................................................................................... 58
Types of Moderation Effects ................................................................ 58
Types of Moderator Variables .............................................................. 58
Interpreting Moderation Effects........................................................... 59
Rescaling of Variables ................................................................................ 59
Is the presence of multicollinearity always a problem? ............................. 60
Good Practices ........................................................................................... 60
In Practice – How to in R: ..................................................................... 61
Week 5 (Lecture 5 and 6) ................................................................................. 66
Lecture 5 – Modern Time Series Analysis, part A .......................................... 66
2 Types of Time Series ............................................................................... 66
6 Methodological Steps ............................................................................. 67
In Practice – How to in R (pre- 6 Methodological Steps above): ........... 67
1. Granger causality ................................................................................... 69
How many lags to include?................................................................... 69
Back to Practice – How to in R (1. Granger Causality):.......................... 70
2. Unit Root and Cointegration Tests ......................................................... 71
Autoregressive process ........................................................................ 71

Role of (phy) .................................................................................. 72
Stationarity .......................................................................................... 73
Condition for Stationarity: ................................................................ 73

, MADS MADLAD |7


Cointegration ....................................................................................... 74
Testing for Cointegration.................................................................. 75
Back to Practice – How to in R:............................................................. 76
Cointegration in Marketing .................................................................. 80
4 long-term scenarios ....................................................................... 80
VAR (Vector Autoregressive) Model .......................................................... 81
Lecture 6 – Modern Time Series Analysis, part B .......................................... 82
VAR ............................................................................................................ 82
3 Forms of VAR models ........................................................................ 82
Structural VAR (SVAR) ...................................................................... 82
Reduced-form VAR ........................................................................... 83
In Practice – How to in R ...................................................................... 83
Endogenous vs. Exogenous (1) ................................................................... 84
Types of Exogeneity ............................................................................. 84
Lag Selection (2)......................................................................................... 85
Lag Selection (continued) .......................................................................... 87
Symmetry vs. Asymmetries .................................................................. 87
Dealing with (non-)stationarity ............................................................ 87
Vector Error Correction (VEC) .................................................................... 88
Seasonality in VAR/VEC ........................................................................ 88
IRF.............................................................................................................. 90
Parameter numerosity ......................................................................... 90
Back to Practice – How to in R:............................................................. 91
Back to Practice – How to in R (IRF):..................................................... 93
FEVD: Forecast Error Variance Decomposition .......................................... 97
Week 6 (Lecture 7)........................................................................................... 99
Lecture 7 – Cluster Analysis .......................................................................... 99
Cluster Analysis: Introduction .................................................................... 99
Steps to Cluster Analysis .......................................................................... 100
Step 1: Define the Research Purpose ................................................. 100

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper madsmadlad. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €4,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 59063 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€4,99
  • (0)
In winkelwagen
Toegevoegd