100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Probabilistic Machine Learning An Introduction 1st Edition By Kevin P. Murphy (Solution Manual) €18,06   In winkelwagen

Tentamen (uitwerkingen)

Probabilistic Machine Learning An Introduction 1st Edition By Kevin P. Murphy (Solution Manual)

 258 keer bekeken  4 keer verkocht
  • Vak
  • Probabilistic Machine Learning An Introduction, 1e
  • Instelling
  • Probabilistic Machine Learning An Introduction, 1e

Probabilistic Machine Learning An Introduction, 1e Kevin P. Murphy (Solution Manual) Probabilistic Machine Learning An Introduction, 1e Kevin P. Murphy (Solution Manual)

Voorbeeld 4 van de 57  pagina's

  • 12 augustus 2023
  • 57
  • 2023/2024
  • Tentamen (uitwerkingen)
  • Vragen en antwoorden
  • Probabilistic Machine Learning An Introduction, 1e
  • Probabilistic Machine Learning An Introduction, 1e
avatar-seller
Full Solution Manual for
“Probabilistic Machine Learning: An Introduction”
Kevin Murphy
1 1 Solutions
2 Part I
Foundations
3 2 Solutions
2.1 Conditional independence
PRIVATE
1. Bayes’ rule gives
P(HjE1;E2) =P(E1;E2jH)P(H)
P(E1;E2)(1)
Thus the information in (ii) is sufficient. In fact, we don’t need P(E1;E2)because it is equal to the
normalization constant (to enforce the sum to one constraint). (i) and (iii) are insufficient.
2. Now the equation simplifies to
P(HjE1;E2) =P(E1jH)P(E2jH)P(H)
P(E1;E2)(2)
so (i) and (ii) are obviously sufficient. (iii) is also sufficient, because we can compute P(E1;E2)using
normalization.
2.2 Pairwise independence does not imply mutual independence
We provide two counter examples.
LetX1andX2be independent binary random variables, and X3=X1X2, whereis the XOR
operator. We have p(X3jX1;X2)6=p(X3), sinceX3can be deterministically calculated from X1andX2. So
the variablesfX1;X2;X3gare not mutually independent. However, we also have p(X3jX1) =p(X3), since
withoutX2, no information can be provided to X3. SoX1?X3and similarly X2?X3. HencefX1;X2;X3g
are pairwise independent.
Here is a different example. Let there be four balls in a bag, numbered 1 to 4. Suppose we draw one at
random. Define 3 events as follows:
•X1: ball 1 or 2 is drawn.
•X2: ball 2 or 3 is drawn.
•X3: ball 1 or 3 is drawn.
We havep(X1) =p(X2) =p(X3) = 0:5. Also,p(X1;X2) =p(X2;X3) =p(X1;X3) = 0:25. Hence
p(X1;X2) =p(X1)p(X2), and similarly for the other pairs. Hence the events are pairwise independent.
However,p(X1;X2;X3) = 06= 1=8 =p(X1)p(X2)p(X3).
2.3 Conditional independence iff joint factorizes
PRIVATE
Independency)Factorization. Let g(x;z) =p(xjz)andh(y;z) =p(yjz). IfX?YjZthen
p(x;yjz) =p(xjz)p(yjz) =g(x;z)h(y;z) (3)
4

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper tutorsection. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €18,06. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 76799 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€18,06  4x  verkocht
  • (0)
  Kopen