100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Structural Analysis and Design

Beoordeling
-
Verkocht
2
Pagina's
30
Geüpload op
15-01-2019
Geschreven in
2018/2019

This summary is based on the topics covered during the seconds year course Structural Analysis and Design (AE2135-I) from Aerospace Engineering at the TU Delft. During this course, the book Aircraft Structures for Engineering Students by T. H. G. Megson (ISBN-13: 9780081009147) is used. From this book, 9 different chapters are (partially) included in this summary.

Meer zien Lees minder










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Chapters 4, 5, 8, 16, 17, 18, 19, 20 and 23
Geüpload op
15 januari 2019
Aantal pagina's
30
Geschreven in
2018/2019
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Summary Structural Analysis and Design
This summary covers all material for the second year course of Aerospace Engineering Structural
Analysis and Design (AE-) at the TU Delft. During this course, the book ‘Aircraft Structures for
Engineering Students’ from T. H. G. Megson is used. The following chapters (in the order as they
were treated during the course) are included in this summary:
- Chapter 16: Bending of open and closed, thin-walled beams
- Chapter 18: Torsion of beams
- Chapter 17: Shear of beams
- Chapter 19: Combined open and closed section beams
- Chapter 20: Structural idealization
- Chapter 8: Columns
- Chapter 4: Virtual work and energy methods
- Chapter 5: Energy methods
- Chapter 23: Wings

A last note is that the equation numbers refer to the numbers in the book.

,Chapter 16: Bending of open and closed, thin-walled beams
§16.1: Symmetrical bending
Assumptions
- Plane cross-sections remain plane and normal to the longitudinal fibers of the beam after
bending.
- Linear elastic materials (obeying Hooke’s law).
- Homogeneous materials.

Direct stress distribution
The strain within a beam subjected to bending is equal to:
𝑦
𝜖𝑧 = − 𝑅 (16.1)

Therefore, Hooke’s law says that the stress distribution is:
𝑦
𝜎𝑧 = −𝐸 𝑅 (16.2)

Integrating the direct stress over the cross-section should equal zero, as the beam is in
equilibrium. Therefore:
∫𝐴 𝑦𝑑𝐴 = 0 (16.5)

This equation states that the position of the neutral axis (𝑦 = 0) should be such that the direct
stress distribution is zero over the cross-section and should therefore pass through the centroid of
the cross-section.
Considering a moment equilibrium gives the following relationship:
𝑦2 𝐸𝐼
𝑀 = − ∫𝐴 𝐸 𝑅
𝑑𝐴 =−𝑅 (16.7)

Combining equations (16.2) and (16.7) gives a relation between the direct stress and the bending
moment:
𝑀𝑦
𝜎𝑧 = 𝐼 (16.9)

In addition, the curvature (1/𝑅) of the bending is given by:
1 𝑀
𝑅
= − 𝐸𝐼 (16.10)

Biaxial bending
In the case where the moment is not along the x- or y-axis, the bending is biaxial and should be
decomposed into an x- and y-component:
𝑀𝑥 = 𝑀 cos 𝜃
𝑀𝑦 = 𝑀 sin 𝜃

The combined stress distribution due to these two moments is equal to (the Normal Flexure
Formula):
𝑀𝑥 𝑦 𝑀𝑦 𝑥
𝜎𝑧 = 𝐼𝑥𝑥
+ 𝐼𝑦𝑦


In this equation, the moment should be taken positive if it produces a tensile normal stress in the
positive quadrant of the coordinate system.
The neutral axis will still pass through the centroid, however, the angle of this axis is not equal to
the angle of the moment. The angle of neutral axis is equal to:
𝑀 𝐼
tan 𝛼 = 𝑀𝑦𝐼𝑥𝑥
𝑥 𝑦𝑦

, §16.2: Unsymmetrical bending
If the Normal Flexure Formula is applied to an unsymmetrical problem, force equilibrium gives
that ∫𝐴 𝑦𝑑𝐴 = 0, which shows that the neutral axis still has to pass through the centroid of the
cross-section. In addition, moment equilibrium gives that ∫𝐴 𝑥𝑦𝑑𝐴 = 𝐼𝑥𝑦 = 0.
Therefore, the Normal Flexure Formula can be applied as long as 𝐼𝑥𝑦 = 0.

In the case that 𝐼𝑥𝑦 ≠ 0, the following formula for the normal stress is valid:
(𝑀𝑥 𝐼𝑦𝑦 −𝑀𝑦 𝐼𝑥𝑦 )𝑦+(𝑀𝑦 𝐼𝑥𝑥 −𝑀𝑥 𝐼𝑥𝑦 )𝑥
𝜎𝑧 = 2 (16.18)
𝐼𝑥𝑥 𝐼𝑦𝑦 −𝐼𝑥𝑦


The angle of the neutral axis will then be equal to:
𝑀𝑦 𝐼𝑥𝑥 −𝑀𝑥 𝐼𝑥𝑦
tan 𝛼 = (16.21)
𝑀𝑥 𝐼𝑦𝑦 −𝑀𝑦 𝐼𝑥𝑦


Equation (16.18) indeed shows that the normal stress equation reduces to the Normal Flexure
Formula whenever 𝐼𝑥𝑦 is zero. This is the case when the coordinate axes are the principal axes of
the cross-section

Identifying principal axes
Using the principal axes can simplify the stress equation a lot. Therefore, it is sometimes more
convenient to transfer the loads to the principal axes of the cross section. The principal axes can
be found using the following rules:
- A plane of symmetry will always be a principal axes.
- The axes will always be orthogonal and will both pass through the centroid.

§16.3: Deflections due to bending
When 𝑢 is the deflection in x-direction and 𝑣 the deflection in y-direction, the general formula for
deflection due to bending is:
𝑀𝑥 𝐼𝑥𝑦 𝐼𝑥𝑥 𝑢′′
[𝑀 ] = −𝐸 [ ] [ ′′ ] (16.29)
𝑦 𝐼𝑦𝑦 𝐼𝑥𝑦 𝑣


§16.4: Calculation of section properties
Parallel axes theorem
Consider an area which is a distance 𝑏 away from the neutral axis. The second moment of inertia
is then equal to:
𝐼𝑁 = 𝐼𝐶 + 𝐴𝑏 2 (16.32)

Where 𝐼𝐶 is the second moment of inertia around the centroid of the area. For the product
second moment of inertia, this theorem gives the following equation (with 𝑎 the horizontal
distance from the centroid of the area to the neutral axis and 𝑏 the vertical distance):
𝐼𝑁 = 𝐼𝐶 + 𝐴𝑎𝑏

Theorem of perpendicular axes
The polar moment of inertia (𝐽 or 𝐼𝑜 ) is equal to:
𝐽 = 𝐼𝑥𝑥 + 𝐼𝑦𝑦 (16.33)

Second moments of inertia
The second moment of inertia around the x-axis can be calculated as follows:
𝐼𝑥𝑥 = ∫𝐴 𝑦 2 𝑑𝐴
€3,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
wimkleermaker

Maak kennis met de verkoper

Seller avatar
wimkleermaker Technische Universiteit Delft
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
8
Lid sinds
7 jaar
Aantal volgers
7
Documenten
3
Laatst verkocht
9 maanden geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen