100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Class notes Lecture 4 Statistics 2/Statistiek 2 (P_BSTATIS_2)

Beoordeling
-
Verkocht
-
Pagina's
6
Geüpload op
09-02-2025
Geschreven in
2023/2024

This document provides a detailed breakdown of partial effects in multiple regression, focusing on: 1. Understanding Partial Effects in Multiple Regression ️ Why b-coefficients alone can’t determine effect strength ️ Standardized Regression Coefficients (b)* ️ Squared Partial Correlation (R²_partial) & Its Interpretation ️ R-Squared Change (ΔR²) for Unique Predictor Contribution 2. Hypothesis Testing for Individual Predictors ️ t-Tests for b-Coefficients (Significance Testing) ️ Confidence Intervals for Regression Coefficients ️ F-Tests for Model Comparison (Complete vs. Reduced Models) ️ How to Determine if Adding a Predictor Improves the Model 3. Practical Examples & Interpretation Real-world case study on class size, academic performance, and socio-economic status (SES) Step-by-step calculations for R² changes, significance testing, and model comparisons

Meer zien Lees minder









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
9 februari 2025
Aantal pagina's
6
Geschreven in
2023/2024
Type
College aantekeningen
Docent(en)
Dr. dr. debby ten hove
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

Partial Effects in Multiple regression


Learning Objectives:
● Compute and interpret effect sizes for single predictors in the multiple regression model
● Test an hypothesis about single (or sets of) predictors in the multiple regression model
● Draw a conclusion about hypotheses for single (or sets) of parameters in the multiple
regression model


Eg Is class size associated with academic performance among schools with a similar percentage
of students receiving free meals?
→ controlling for percentage of free meals (moderator relationship)

(1) Multiple Regression

1.1 Effect Sizes in Multiple Regression

We cannot use b to judge the strength of the partial association between x and y as b depends on the
scale on which x and y were measured
Eg if one predictor is measured in metres and another predictor is measured in kilograms,
their coefficients will be on different scales
→ hence, we inspect effect size instead
1. Standardised regression coefficient: b*
2
2. Squared partial correlation: r p
3. Change in explained variation: △ R 2

1.1.1 Standardised Regression Coefficient (b*)

We can scale each of the b coefficient in the multiple regression model using the:
● SD of the respective predictor (x)
● SD of the outcome variable (y)

Hence, b* is the amount of SDs y is expected to change when x i increases with 1 SD (controlling for
all other predictors in the model)

Rule of thumb for interpretation
● 0 - .10: negligible
● .10 - .30: small
● .30 - .50: moderate
● .50 ≤ large

Eg

^
AP=9.981 −0.067 ∗ PFM +0.003 ∗CS
sx 1 9.068
For PFM: b 1∗¿ b1 ( )=−0.067( )=−0.91
sy 0.667

, 2
1.1.2 Squared Partial Correlation (r p )
Represents the proportion of variance in y not associated with any other x's that is
explained by x 1

In a model with 2 predictors, the partial correlation between x 1 and y, controlling for x 2:
r yx 1−r yx2 r x1 x2
r yx1. x 2=
√❑
Which is easier to compute when squared:
2 R 2−r x22 proportion variation∈ y uniquely explained by x 1
r yx1. x 2 = 2 →
1−r x2 proportion variation∈ y not explained by x 2

Rule of thumb to interpret:
● 0 - .01: negligible
● .01 - .06: small
● .06 - .14: moderate
● .14 ≤ large

Eg




2 2
2 R −r x2 0.845−(−0.919)2 0.004
r yx1. x 2 = = = = 0.002
1−r x2
2
1−(−0.919)
2
0.155




Interpretation: class size explains 0.2% of the differences in academic performance that were not yet
explained by the percentage of students with free meals. This is a negligible effect.

1.1.3 R-Squared Change ( △ R 2)
The difference in explained variation when comparing two models
1. Complete model with all predictors
Eg ^
y c =a+b1 x1 +b 2 x 2
2. Reduced model which includes all predictors, apart from the one for which
we want to know the partial effect
Eg ^
y r =a+b 1 x 1

R-squared change: △ R 2=Rc 2−Rr 2

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
kendt Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
24
Lid sinds
3 jaar
Aantal volgers
0
Documenten
58
Laatst verkocht
1 maand geleden
kentaq

Hello! I’m selling all my psychology (and more) notes and assignments from first, second, and third year. I’ve averaged an 8 throughout my studies, so I hope these notes will help you too. I also took the Emotion, Cognition & Behaviour pre-minor and a minor in Peace & Conflict Studies so I have notes for those too!

2,5

2 beoordelingen

5
0
4
1
3
0
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen