100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden
logo-home
Bio 101 Chapter 10 Notes $11.99
In den Einkaufswagen

Notizen

Bio 101 Chapter 10 Notes

 0 mal verkauft

This is a comprehensive and detailed note on Chapter 10 patterns of inheritance. *Essential Study Material!!

vorschau 3 aus 20   Seiten

  • 11. oktober 2024
  • 20
  • 2022/2023
  • Notizen
  • Prof. tracy
  • Alle klassen
Alle Dokumente für dieses Fach (3)
avatar-seller
anyiamgeorge19
Chapter 10 - Patterns of Inheritance
10.2 Tracking Traits
Early Thoughts about Heredity
● In the nineteenth century, people thought that hereditary material must be some
type of fluid, with fluids from both parents blending at fertilization like milk into
coffee.
● However, the idea of “blending inheritance” failed to explain what people could
see with their own eyes.
● Children sometimes have traits such as freckles that do not appear in either
parent, for example. A cross between a black horse and a white one does not
produce gray offspring.
● At the time, no one knew that hereditary information is divided into discrete units
(genes), an insight that is critical to understanding how traits are inherited.
● Around 1850, Gregor Mendel began an extended series of experiments breeding
pea plants, which vary in traits such as flower color, height, and so on.
● Mendel, an Austrian monk, crossed thousands of plants, and kept careful records
of the traits of parents and offspring.
● Through these experiments, he gained insight into the nature of inheritance.
Mendel’s Pea Plant
● Mendel cultivated the garden pea.
● This species is naturally self-fertilizing, which means its flowers produce male
and female gametes that form viable seeds when they meet up.
● In order to study inheritance, Mendel had to carry out controlled matings
(crosses) between individuals with specific traits.
● First, he removed the pollen-bearing parts (anthers) from pea flowers.
● Removing anthers from a pea flower prevents it from self-fertilizing.
● Second, he cross-fertilized the flowers by brushing their egg-bearing parts
(carpels) with pollen from other plants.
● Third, he collected seeds that formed from the cross-fertilized flowers, planted
them, and recorded the traits of the resulting pea plant offspring .
● Many of Mendel’s experiments started with plants that “breed true” for particular
traits such as white flowers or purple flowers.
● Breeding true for a trait means that, new mutations aside, all offspring have the
same form of the trait as the parent(s), generation after generation.
● For example, all offspring of pea plants that breed true for white flowers also
have white flowers.
● As you will see in the next section, Mendel cross-fertilize pea plants that breed
true for different forms of a trait, and discovered that the traits of the offspring
often appear in predictable patterns.
● Mendel’s meticulous work breeding pea plants and tracking their traits led him to

, conclude (correctly) that hereditary information passes from one generation to
the next in distinct units.
● He published his work in 1866, but apparently it was read by few and understood
by no one at the time.
● In 1871 he was promoted, and his pioneering experiments ended.
● When he died in 1884, he did not know that his work with pea plants would be
the starting point for modern genetics.
Inheritance in Modern Terms
● Today, we know that Mendel’s “hereditary units” are genes. Individuals of a
species share certain traits because their chromosomes carry the same genes.
● Each gene occurs at a specific location on a particular chromosome
● Diploid cells have pairs of homologous chromosomes, so they have two copies of
each gene; in most cases, both copies are expressed at the same level.
● The two copies of any gene may be identical, or they may be different alleles.
Homozygous and Heterozygous
● An individual with the same allele of a gene on both homologous chromosomes
is homozygous for the allele (homo- means “the same”).
● Organisms breed true for a trait because they are homozygous for alleles
governing the trait.
● By contrast, an individual with different alleles of a gene is heterozygous for the
allele (hetero- means “different”).
● A hybrid is a heterozygous individual produced by a cross or mating between
parents that breed true for different forms of a trait.
Genotype and Phenotype
● Homozygous and heterozygous describe genotype, the particular set of alleles
that an individual carries.
● Genotype is the basis of phenotype, which refers to the individual’s observable
traits.
● “White-flowered” and “purple-flowered” are examples of pea plant phenotypes
that arise from differences in genotype.
Dominant and Recessive
● The phenotype of a heterozygous individual depends on how the products of its
two different alleles interact.
● In many cases, the product of one allele influences the effect of the other, and
the outcome of this interaction is reflected in the individual’s phenotype.
● An allele is dominant when its effect masks that of a recessive allele paired with
it.
● A dominant allele is often represented by an uppercase italic capital letter such
as A; a recessive allele, with a lowercase italic letter such as a.
Overall Message
● Genotype refers to the particular set of alleles that an individual carries.

, Genotype is the basis of phenotype, which refers to the individual’s observable
traits.
● A homozygous individual has two identical alleles of a gene. A heterozygous
individual has two nonidentical alleles.
● A dominant allele masks the effect of a recessive allele paired with it in a
heterozygous individual.

10.3 Mendelian Inheritance Patterns
Segregation of Genes into Gametes
● Meiosis separates the homologous chromosomes of a pair and packages each in
a different gamete.
● Thus, alleles on the homologous chromosomes end up in different gametes.
● Let’s use our pea plant alleles for purple and white flowers in an example.
● A plant homozygous for the dominant allele (PP) can only make gametes that
carry the dominant allele P.
● A plant homozygous for the recessive allele (pp) can only make gametes that
carry the recessive allele p.
● If the two homozygous plants are crossed (PP × pp), only one outcome is
possible: A gamete carrying allele P meets up with a gamete carrying allele p.
● All offspring of this cross will have both alleles—they will be heterozygous (Pp).
● A grid called a Punnett square is helpful for predicting the outcome of crosses
like this one.
Monohybrid Crosses
● Mendel did not know what alleles were, but he discovered that they segregate
into gametes and recombine in offspring.
● Experiments called monohybrid crosses were key to this discovery.
● A monohybrid cross is a cross between individuals that are identically
heterozygous for alleles of one gene (Aa × Aa, for example).
● The experiment begins with a cross between individuals that breed true for
different forms of a trait.
● The cross produces F1 (first-generation) hybrid offspring.
● A cross between two of these F1 individuals is the monohybrid cross, and it
produces F2 (second-generation) offspring.
● The frequency at which the two forms of the trait appear among the F2 offspring
offers information about a dominance relationship between alleles governing the
trait.
● A cross between two purple-flowered heterozygous plants (Pp × Pp) offers an
example of a monohybrid cross. Each of these plants makes two types of
gametes: gametes that carry a P allele, and gametes that carry a p allele.
● The two types of gametes can meet up in four possible ways at fertilization.
● Three of the four possible combinations include the dominant allele P. In other

Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:

Garantiert gute Qualität durch Reviews

Garantiert gute Qualität durch Reviews

Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.

Schnell und einfach kaufen

Schnell und einfach kaufen

Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.

Konzentration auf den Kern der Sache

Konzentration auf den Kern der Sache

Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.

Häufig gestellte Fragen

Was bekomme ich, wenn ich dieses Dokument kaufe?

Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.

Zufriedenheitsgarantie: Wie funktioniert das?

Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.

Wem kaufe ich diese Zusammenfassung ab?

Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer anyiamgeorge19. Stuvia erleichtert die Zahlung an den Verkäufer.

Werde ich an ein Abonnement gebunden sein?

Nein, du kaufst diese Zusammenfassung nur für $11.99. Du bist nach deinem Kauf an nichts gebunden.

Kann man Stuvia trauen?

4.6 Sterne auf Google & Trustpilot (+1000 reviews)

45.681 Zusammenfassungen wurden in den letzten 30 Tagen verkauft

Gegründet 2010, seit 15 Jahren die erste Adresse für Zusammenfassungen

Starte mit dem Verkauf
$11.99
  • (0)
In den Einkaufswagen
Hinzugefügt