100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Multi-Variable Calculus Final Exam and Solution

Rating
-
Sold
-
Pages
7
Grade
A+
Uploaded on
29-12-2021
Written in
2020/2021

This document as the title suggests contains exam questions and their respective solutions. I had the privilege to take this exam last year and I realized this may be an extremely useful resource for anyone who needs more preparation material for their exams.

Show more Read less









Whoops! We can’t load your doc right now. Try again or contact support.

Document information

Uploaded on
December 29, 2021
Number of pages
7
Written in
2020/2021
Type
Exam (elaborations)
Contains
Questions & answers

Content preview

Math 211, Multivariable Calculus, Fall 2011
Final Exam Solutions

1. (10 points) Find the equation of the plane that contains both the point (−1, 1, 2) and
the line given by
x = 1 − t, y = 1 + 2t, z = 2 − 3t.

Solutions: A point on the line is (1, 1, 2) and a vector parallel to the line is h−1, 2, −3i.
Another vector parallel to the plane we want is h2, 0, 0i (the vector between the two
points we have) so a vector perpendicular to the plane is given by

n = h2, 0, 0i × h−1, 2, −3i = h0, 6, 4i .

The equation of the plane is therefore

6(y − 1) + 4(z − 2) = 0

or
6y + 4z = 14 .

2. (10 points) Consider the function f (x, y) = x2 (y − 1).
(a) What is the directional derivative of f at (1, 3) in the direction of the vector
v = h3, −4i?
Solution: ∇f = h2x(y − 1), x2 i, so ∇f (1, 3) = h4, 1i. The directional derivatives
is therefore
h4, 1i · h3, −4i 8 8
=√ = .
| h3, −4i | 25 5
(b) What is the maximum directional derivative of f at (1, 3), and in which direction
does it occur?
Solution: The maximum directional derivative is the length of the gradient vector

17 and it is in the direction of the gradient vector h4, 1i .

3. (10 points) Find the linear approximation to the function f (x, y) = 2 − sin(−x − 3y)
at the point P = (0, π), and then use your answer to estimate f (0.001, π).
Solution: The linear approximation is given by

l(x, y) = f (0, π) + fx (0, π)(x − 0) + fy (0, π)(y − π).

We have fx = cos(−x − 3y), so fx (0, π) = cos(−3π) = −1 and fy = 3 cos(−x − 3y), so
fy (0, π) = 3 cos(−3π) = −3. Also f (0, π) = 2 − sin(−3π) = 2. Therefore

l(x, y) = 2 − (x − 0) − 3(y − π) .

So we have
f (0.001, π) ≈ 1.999 .

, 4. (5 points) Prove that, for any curve described by a vector-valued function r(t), the
unit tangent vector T(t) is always orthogonal to its derivative T0 (t).
Solution: The unit tangent vector is a unit vector so

T(t) · T(t) = 1.

Differentiating both sides we get

T0 (t) · T(t) + T(t) · T0 (t) = 0

so
T0 (t) · T(t) = 0.
Therefore T0 (t) is perpendicular to T(t).

5. (10 points) Let C be the curve given by

r(t) = (cos t + t sin t)i + (sin t − t cos t)j, for t > 0.

Find the unit tangent vector T(t), unit normal vector N(t), and curvature κ(t) for C.
(Your answers should be functions of t.)
Solution: We have
r0 (t) = ht cos t, t sin ti
so p √
|r0 (t)| = t2 cos2 t + t2 sin2 t = t2 = t
since t > 0. Therefore the unit tangent vector is

r0 (t)
T(t) = = hcos t, sin ti .
|r0 (t)|

Differentiating this we get
T0 (t) = h− sin t, cos ti .
Then
T0 (t) h− sin t, cos ti
N(t) = 0
= = h− sin t, cos ti .
|T (t)| 1
The curvature is then
|T0 (t)| 1
κ(t) = 0 = .
|r (t)| t

6. (5 points) Show that the function
 2 2
x − y if (x, y) 6= (0, 0);
f (x, y) = x2 + y 2
0 if (x, y) = (0, 0);


is not continuous at (0, 0).
CA$10.54
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
radhikakhatri

Also available in package deal

Thumbnail
Package deal
Ace Your Calculus Exam (University Edition)
-
6 2021
CA$ 63.27 More info

Get to know the seller

Seller avatar
radhikakhatri York University
View profile
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
3 year
Number of followers
0
Documents
6
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions