100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
class notes CA$12.61   Add to cart

Class notes

class notes

 4 views  0 purchase

helps in the understanding of matrices

Preview 1 out of 3  pages

  • November 21, 2022
  • 3
  • 2022/2023
  • Class notes
  • Alex funland
  • All classes
All documents for this subject (5)
avatar-seller
oluwatosinolanrewaju
University of Regina MATH 122 - Linear Algebra I




MATH 122 - Linear Algebra I
§5.2. Linear independence

Martin Frankland

September 19, 2022


Definition 1. Vectors ⃗v1 , . . . , ⃗vk in Rn are called linearly independent if the only linear
combination that yields the zero vector

c1⃗v1 + · · · + ck⃗vk = ⃗0 (1)

is the trivial combination c1 = c2 = . . . = ck = 0. Otherwise the vectors are called linearly
dependent. A nontrivial linear combination of the form (1) is called a linear dependence
relation among the vectors ⃗v1 , . . . , ⃗vk .

Example 2. Are the given vectors in R3 linearly independent? If so, prove it; if not, find a
linear dependence relation among the vectors.

    
4 1 −2
(a) ⃗v1 = 1 , ⃗v2 = 3 , and ⃗v3 = 1 .
    
−1 1 2


Solution. The coefficients c1 , c2 , c3 in the equation

c1⃗v1 + c2⃗v2 + c3⃗v3 = ⃗0

are the unknowns in the homogeneous linear system with the ⃗vi as columns:
     
4 1 −2 0 1 3 1 0 1 3 1 0
R1 ↔R2 R2 −4R1 R2 +3R3
⃗v1 ⃗v2 ⃗v3 ⃗0 =  1 3 1 0 ∼  4 1 −2 0 ∼
 
0 −11 −6 0 ∼
R3 +R1 “improve the pivot”
−1 1 2 0 −1 1 2 0 0 4 3 0
   
1 3 1 0 1 3 1 0
0 1 3 0 R3 −4R ∼ 2 0 1 3 0 .
0 4 3 0 0 0 −9 0

Since the matrix has rank 3, there is only the trivial solution c1 = c2 = c3 = 0. Hence the
vectors ⃗v1 , ⃗v2 , and ⃗v3 are linearly independent .


© 2022 Martin Frankland All Rights Reserved 1

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller oluwatosinolanrewaju. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for CA$12.61. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

75632 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
CA$12.61
  • (0)
  Add to cart