100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Practice exam solution CA$6.68
Add to cart

Exam (elaborations)

Practice exam solution

 5 views  0 purchase

Practice exam solution, which is similar to the final exam in term of difficulties and format

Preview 2 out of 9  pages

  • December 19, 2022
  • 9
  • 2022/2023
  • Exam (elaborations)
  • Questions & answers
All documents for this subject (10)
avatar-seller
tranghane
1. [5 marks] Let
ax2
f (x) = ,
bx + cx3
where a, b and c are nonzero constants. Find the polynomials s(x) and l(x) such that
s(x) best approximates f (x) for small values of x, and l(x) best approximates f (x) for
large values of x.
For small x the term bx + cx3 is well approximated by bx and so f (x) ≈ ab x. For large x
a
the term bx + cx3 is well approximated by cx3 and so we have f (x) ≈ cx . This is a good
approximation, and full marks were given for it, but it’s true that it isn’t a polynomial.
The other accepted answer is f (x) ≈ 0, being the best polynomial approximation of f (x).
2. [5 marks] Find all the values of c such that
 2
x + 2 if x ≤ c
f (x) =
4x − 1 if x > c
is continuous.
Both branches are polynomials and continuous functions. The only possible point of
discontinuity is at x = c. We therefore require c2 + 2 = 4c − 1. Solving gives c = 1 and
c = 3.
3. [5 marks] Let f (x) = 2x2 + 3x − 1. Use a definition of the derivative to find f ′ (0). No
credit will be given for solutions using differentiation rules, but you can use those to check
your answer.
We compute
2(x + h)2 + 3(x + h) − 1 − 2x2 − 3x + 1
f ′ (x) = lim
h→0 h
2
4xh + 2h + 3h
= lim
h→0 h
= lim 4x + 2h + 3
h→0
= 4x + 3
and so f ′ (0) = 3.
4. [5 marks] Find the slope of the tangent line to the curve

x−7
y=√
x+7
at x = 9.
First we compute the derivative using quotient rule to see
1 √ √


2 x
( x + 7) − 2√1 x ( x − 7)
y = √ 2 .
( x + 7)

, At x = 9 we have that the slope of the tangent line is
1
6
(10+ 4) 7
= .
100 300

5. [5 marks] Find the slope of the tangent line to the curve y = xx at x = e2 .
First, we rewrite y = ex log (x) . (Alternatively, take the logarithm
 x logof(x)both sides and differ-
′ x
entiate implicitly.) Next differentiate to get y = log x + x e = (log x + 1)xx . So
2
the slope of the tangent line at x = e2 is 3e2e .

6. [5 marks] Find the equation of the tangent line to the curve
2
x2 + y 2 = 2x2 + 2y 2 − x

at the point 0, − 21 . Your answer should be in the form y = mx + b.


Let’s differentiate implicitly in y:
d d  2 
x2 + y 2 = 2x2 + 2y 2 − x

dy dy
2x + 2yy = 2(2x2 + 2y 2 − x)(4x + 4yy ′ − 1).



We substitute x = 0 and y = − 21 and solve for y ′ :

1
−y ′ = 2 (−2y ′ − 1)
2
y = 2y ′ + 1


y ′ = −1.

So, our tangent line equation will take the form y = −x − b. It remains to find b by
substituting our point: − 21 = b. All together we have y = −x − 12 .

7. [5 marks] Use the degree 2 Taylor approximation to f (x) = cos(x) about x = 0 to
approximate cos 51 .
2
We use a second order Taylor approximation about x = 0: T2 (x) = f (0)+f ′ (0)x+f ′′ (0) x2! .
First we compute f (0) = cos(0) = 1 and f ′ (0) = − sin 0 = 0 and f ′′ (0) = − cos490 = −1 so
x2 1
that cos x ≈ T2 (x) = 1 − 2 . We therefore make the approximation cos 5 ≈ 50 .
2
8. [5 marks] Let f (x) = e−x +2x . Find all local extrema, and indicate clearly if each is a
local maximum or a local minimum.
2
We first find the derivative, f ′ (x) = e−x +2x (2 − 2x), to look for critical points. This
function exists everywhere so we solve f ′ (x) = 0 which yields only x = 1 since ex ̸= 0 for
any x. Our critical point x = 1 is a local maximum. There are several ways to see that
it is, in fact, a maximum:




2

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller tranghane. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for CA$6.68. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

48072 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
CA$6.68
  • (0)
Add to cart
Added