100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting stellingen & bewijzen Wiskunde 2 (HI(B)) CA$6.11   Add to cart

Summary

Samenvatting stellingen & bewijzen Wiskunde 2 (HI(B))

2 reviews
 167 views  10 purchases
  • Course
  • Institution

Dit is een samenvatting van alle te kennen stellingen en bewijzen van het vak wiskunde met bedrijfseconomische en technologische toepassingen 2 in het academiejaar gegeven door Tom Mestdag.

Preview 2 out of 14  pages

  • January 17, 2023
  • 14
  • 2022/2023
  • Summary

2  reviews

review-writer-avatar

By: juliedens01 • 1 week ago

review-writer-avatar

By: eveliendesmedt • 10 months ago

avatar-seller
Wiskunde 2: bewijzen en
stellingen
2.3 Matrixbewerkingen: Elementaire matrices
Stelling
Als j =/ k dan is Uij * Ukl = 0m
Als j = k dan is Uij * Ukl = Uil

Bewijs
De matrix 0m in de opgave van de stelling staat voor de nulmatrix in orde m. Beide beweringen volgen uit
Uij*Ukl = (⃗ ej ¿( ⃗
ei ∙ ⃗ ek ∙ ⃗
el )= ⃗ ej ¿ ¿ T ∙ ⃗
ei ∙( ⃗ ⃗T ¿
T T
ek )∙ el
In het geval dat j =/ k is de (1,1)-matrix ⃗ ej ∙ ⃗
T
ek net 0, dus is Uif * Ukl de nulmatrix. In het geval waarbij j=k is ¿ ¿= 1 en dus
Uij = Ujl = ⃗ ⃗ T
ei ∙ el = Uil


2.4 Matrixbewerkingen: De inverse van een vierkante
matrix
Stelling
Als A inverteerbaar is, is inverse matrix B uniek.

Stelling
( A ∙ B)−1=B−1 ∙ A−1
−1
( A¿¿ t ) =¿ ¿

Stelling
Er geldt voor i =/ j:
1) Eij(a) ∙ Eij(-a) = I
2) Eij ∙ Eij = I
3) Ei(c) ∙ Ei(c−1 ¿ = I

Bewijs
We tonen enkel de 1ste en de 3de uitspraak aan. De 2de is analoog
Er geldt: (I + aUij) (I - aUij) = I – aUij + aUij – a²Uij Uij
=I
Tevens is: (I+ (c-1) Uii) (I + (1 / c – 1) Uii) = I + (1/c - 1) Uii + (c-1) Uii + (c-1) (1/c -1) Uii Uii
= I + (1/c -1 + c – 1 + 1 – c – 1/c + 1)Uii
=I

Stelling
Voor een vierkante matrix (n x n) A zijn volgende uitspraken equivalent:
1) Matrix is regulier: rank(A) = n
2) Ref(A) = In
3) A is een product van elementaire matrices
4) A is inverteerbaar
x =⃗b van n vergelijkingen in n onbekenden heeft een unieke oplossing ⃗x = A−1 ∙ ⃗b
5) Het stelsel A ∙ ⃗

Bewijs
(1)  (2): Als rank(A) = n, dan zijn er n leidende 1-en. N is in een vierkante matrix ook het aantal rijen, dus ref(A) = In

, (2)  (3): ref(A) = In dus er bestaat een product van elementaire matrices C = Ek ∙ … ∙ E1 zodat C ∙A = In. Elk van die
elementaire matrices zijn inverteerbaar met elementaire inversie. Als gevolg is C ook inverteerbaar met
−1 −1 −1
C =E1 ∙ … ∙ E k . Indien C ∙ A = In vinden we dat A = C−1, wat het product is van elementaire matrices
(3)  (4): alle elementaire matrices zijn inverteerbaar
x =⃗b dat A ∙ A ∙ ⃗x = A ∙ ⃗b  ⃗x = A ∙ ⃗b
−1 −1 −1
(4)  (5): Wanneer A inverteerbaar is, dan volgt uit A ∙ ⃗
(5)  (1): Unieke oplossing voor rank(A) moet n zijn


4.1 Vectoren en deelruimten: R
n
als verzameling
van vectoren
Stelling
v1,…,⃗
Als vectoren {⃗ vk } lineair onafhankelijk zijn in Rn , dan is k =< n
Bewijs

[]
λ1
Noem ⃗λ= … . Lineaire onafhankelijkheid kunnen we ook uitdrukken als de eigenschap die zegt dat de
λk
matrixvermenigvuldiging van V ∙ ⃗λ = 0 ⃗ een unieke oplossing heeft, namelijk ⃗λ=⃗0. Deze matrixvermenigvuldiging kunnen
we is een stelsel van n vergelijkingen in k onbekenden. Hieruit volgt dat rank(V) net gelijk is aan het aantal onbekenden, in
dit geval dus k. Bij definitie is de rang van een n x k-matrix =< min(k, n). We kunnen dus concluderen dat k =< n.

Stelling
Elke basis van Rn telt n vectoren.



Stelling
Beschouw een stel vectoren {⃗
v1,…,⃗ vn} lineair onafhankelijk zijn in Rn , en de bijhorende matrix V ten opzichte van de
standaardbasis. De volgende uitspraken zijn equivalent:
1) Het stel {⃗
v1,…,⃗ vn} is lineair onafhankelijk
2) V is een inverteerbare n x n-matrix
3) Het stel vectoren {⃗
v1,…,⃗ vn} is een basis voor Rn
Bewijs
(1)  (2): rank(V) = k = n. Hieruit volgt dat V inverteerbaar is.
(2)  (3): Als V een inverteerbare n x n-matrix is, dan volgt hieruit dat elke matrixvergelijking V ∙ ⃗ x = ⃗b met ⃗x en b⃗ n-
dimensionale kolomvectoren een unieke oplossing heeft, namelijk ⃗ x =V ∙ b. Als we het geval b⃗ = 0 nemen, betekent
−1 ⃗

deze eigenschap dat alle vectoren {⃗ v1,…,⃗ vn} lineair onafhankelijk zijn. Anderzijds voor een willekeurige b⃗ kunnen de
(uniek bestaande) componenten xi van ⃗ x gebruikt worden om b⃗ te beschrijven als een lineaire combinatie x1⃗ v 1 + … + xn

vn. Hiermee hebben we voortbrengendheid aangetoond.
(3)  (1): Per definitie zijn de vectoren van een basis steeds lineair onafhankelijk.

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller StudentUA8. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for CA$6.11. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

77254 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
CA$6.11  10x  sold
  • (2)
  Add to cart