100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
summary Matrices and Linear Transformations CA$4.45
Add to cart

Summary

summary Matrices and Linear Transformations

 11 views  0 purchase

A course on matrices and vector spaces, also known as linear algebra, is a fundamental subject in mathematics that deals with linear equations, systems of equations, and the properties of vectors and matrices. The course starts with an introduction to matrices, which are rectangular arrays of nu...

[Show more]

Preview 4 out of 36  pages

  • March 10, 2023
  • 36
  • 2022/2023
  • Summary
All documents for this subject (1)
avatar-seller
mohamed-aminerhounna
Cours d’algèbre 1
Filière MIP-MIPC
premier semestre

........................................
Chapitre : Calcul matriciel et systèmes linéa
((Chapitre complet))
[Séance ..]




Karim KREIT

FST-UCA

,Copyright © 2020-2021 Karim KREIT

Copying

All rights reserved.

Art. No xxxxx
ISBN xxx–xx–xxxx–xx–x
Edition 0.0

Published by FST-UCA

,Table des matières



1 Matrices (Définitions et propriétés). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 Calcul Matriciel ....................................................................................... 4
1.1.1 Définition et notations ...................................................................... 4
1.1.2 Matrices particulières ....................................................................... 5
1.1.3 Opérations sur les matrices .............................................................. 8
1.2 Quelques propriétés des matrices carrées ................................................ 14
1.2.1 Puissance d’une matrice ................................................................. 14
1.2.2 Matrices symétriques-Matrices antisymétriques ................................ 16
1.2.3 La trace ........................................................................................ 17
1.2.4 Matrices inversibles ....................................................................... 19

2 Résolution des systèmes linéaires (Pivot de Gauss) . . . . . . . . . . . . . . . . . . . 23
2.0.1 Les matrices élémentaires .............................................................. 23
2.1 Matrices échelonnées ............................................................................. 25
2.1.1 Équivalence à une matrice échelonnée ............................................. 26
2.1.2 Inverse d’une matrice - Méthode Gausse .......................................... 29
2.2 Systèmes linéaires ................................................................................. 32
2.2.1 Matrices et systèmes linéaires ........................................................ 32
2.2.2 Matrices inversibles et systèmes linéaires ........................................ 32




3

, 1. Matrices (Définitions et propriétés).

1.1 Calcul Matriciel ........................................................ 4
1.2 Quelques propriétés des matrices carrées .................... 14




Dans ce chapitre, K désigne un corps. On peut penser à Q, R ou C.


1.1 Calcul Matriciel

1.1.1 Définition et notations
Definition 1.1.

Soit (n, p) ∈ N∗ .
On appelle matrice de type (n, p) ou de format n×p à coefficients dans K, un tableau
rectangulaire A à n lignes et p colonnes d’éléments de K, c’est-à-dire

a1,1 a1,2 ... a1,j ... a1,p 
 
a2,1 a2,2 ... a2,j ... a2,p 
 
 
 . . . ... ... ... ... . . . 
A = 
 ai,1 ai,2 ... ai,j ... ai,p 

 
 . . . ... ... ... ... . . . 

an,1 an,2 ... an,j ... an,p


 
Et en abrégé: A = ai,j 16i6n ou plus simplement (aij ) lorsqu’il n’y a pas de confu-
16j6p
sion.

• Les ai,j sont appelés coefficients de la matrice A. L’élément ai,j correspond a
la valeur de l’intersection de la ligne i et de la colonne j.

• On dit que A est de taille n × p.

L’ensemble des matrices à n lignes et p colonnes à coefficients dans K est noté
Mn,p (K). Si K = R les éléments de Mn,p (R) sont appelés matrices réelles.




Exemple 1.1 !
1 −2 5
A=
0 3 7
est une matrice 2 × 3 avec, par exemple, a1,1 = 1 et a2,3 = 7.



4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller mohamed-aminerhounna. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for CA$4.45. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

56326 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
CA$4.45
  • (0)
Add to cart
Added