100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Engineering Mathematics 145 Summary

Rating
-
Sold
4
Pages
36
Uploaded on
28-08-2023
Written in
2023/2024

An in-depth and concise summary of engineering mathematics procedures. Covers concepts such as integration techniques, complex numbers, limits, hyperbolic trigonometry, inverse trigonometry, linear systems, matrices, and partial fractions, among others

Show more Read less
Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
Unknown
Uploaded on
August 28, 2023
File latest updated on
November 3, 2023
Number of pages
36
Written in
2023/2024
Type
Summary

Subjects

Content preview

INVERSE TRIG FUNCTIONS


1 .
Inverse sin The inverse of sin on interval
-


I' is defined as




sinc arcsin arcsince
siny where -- y -* 3 + -x
y y
=




y
= =
=


, ,




X -
Note : arcsin(since) =x for xE /-Yi ? ]

↑ sinCarcsinc) =
x for [-1 ; 1]

Jos
↳ -
-




↑ 2
-
1) ⑧



( -
1i -

2) Theorem :
for x5 (-1 : 1)

· Carcsine) =
-x ) ! -
x
=

arcsinc + C




2 . Inverse cos




y
=
COS y
=
arCOSS The inverse of cos on the interval [0 ; ] is defined as




( 1 ; 4) 3
0-y-M
Tr
-

x
arccos where +1-x-1
y x
cosy
=
=


⑳ ,




- ⑧


(π ; -

1)
Y ↑/
z




-
Note :
arccos(oss)


cos(arcoss) =
=




x
x for



for
x =



E [-1
[0 ; ]

: 1]


(i
Theorem :
for x((-1 : 1)

· Carcoss) =
-x ) -
x
=
arcoss +
C




3 . Inverse tan



y =ARS y
=
arctans The inverse of tan on the interval (*) is defined as




IY *



I
3




I
-
E R
"
X
M arctanse where
-
y= , =

tany
2



- -
Note
:

arctan(tance) =x for E - :* ]

-
-




- tanCarctans) =
x for E R
2
1 2



- M
2
I Theorem :
for x R

Carctance) =
, x2 / c i
=
arctan +
C

,HXPRBOLIC FUNCTIONS
I

sinn= e- COSECRIC =

sinn
I
e -
COSC

sech-Con
e
+

=




2

RIC es -x Core in
tannic=sns=
-




x
ex
sinn
-

+
e




sinhe
y y 20shx y tanns
=
=
=




f I




-
X X




... ↳ >I
-




!. is -
!

-


- -
I





Hyperbolic derivatives /S integrals)
Hyperbolic function function :
identities :

X

d
sinh(x y) sinks coshy costs sinh(2x) sinho= cost o
+
= ·
+
sinhy . =
2 sinks cost a just +
(



cosh(ccty) = coste ·


coshy + sinks .



Sinky cosh-sint" = 1 a cost = sinc


cosh(2x) =
cost +
sinh =
1 + z sink's I-tank : sech a tann= seck




COMPLEX NUMBERS


--a +
bi where a ,
b t R :
Re( -) =
a 3 (m(-) =

b




Addition :


(a +
bi) +
( +
di) =
(a +
c) +
i(b +

d)



Subtraction
:


(a +
bi) -
(c +
di) =
(a -
c) +
i(b -
d)



Multiplication (a bi)( di) (ac bd) i(bc ad)
:
=
+ + + +
-




=(a+
bilk- bd) i
di) =(ac ad)
a
+ -




Division :
where c=0 d = O




We define the compless bi bi
conjugate of number Di If then-E R
=

a -= -
any as
-
-= a + - =
+
a -
.

,

, Geometric representation of compless numbers :




Im
X



Re(-) By (m) -)
iy determined by ordered (C
y) where
:
-= x an pair x
+ = =
,
,




·
Re




it i le me
relationship



...
x




-
=




-
rcOSO



rcoso
between




+
3


irsing
y
= using




=
-=xc+yi3



r(cos6+isinG)
the
length angle' representation is




Standard form of - : - = x +


yi where x =
ReC -1 3y = 1mC-) with cartesian coordinates (sc , y)
,
.




Polar form of --=r(cosotising) where roso
=

Re(-)3 usino =
1mC-) with polar coordinates Cr ol ,
,




1-1
Modulus x
yi x yz
=
:
r
+

of - = + =
- -
=




Argument of - :
arg)-)= arctan ? =
& + 2nk
,
KE .
If Re(-) Co
,
add subtract i to from a The Principle argument of -




is the
unique argument Arg(-) =

8
,
where 0 =(-4in) .




Note :


for two complex numbers -=r(cosx+ isinx) 3 w =
s(cos +
isin) ,
we have that


-w
=

rs(cos(x +
3) +
isin(x +
B)) 3 w =
(cos(a -
B) +

isin(a-5)) .




Sub-note for any -


,
wD ,
-W = -
-w > i =

i


arg)-w)
=



args -) +



arg(w) S arg(n) =

a w!


I heorem De Moirre's formula ne complex r(cosO isino) ,
:




for any ↳ number -= +
,


·


(r(coso+isina))" =
r(cos(no) + isin(nal)

cor) .



-=-1 arg(-r) =



narg(-)



Theorem
:




for a
positive integer n b a non-zero complex number -
let o be an
argument of -




Then all the nith roots of -
are
given by the formula :




isn( ** )
*
-(cos(0 )
+
n
for 90 n-13
·



K =
+
1 2
=
-

, , . . .,
CA$10.92
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
kylecohead
5.0
(1)

Also available in package deal

Get to know the seller

Seller avatar
kylecohead Long Island University, Brooklyn
Follow You need to be logged in order to follow users or courses
Sold
8
Member since
4 year
Number of followers
9
Documents
10
Last sold
2 months ago

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions