100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Compilation Booklet of Past Papers for Paper 3 - Pure Mathematics 2 & 3 £4.33   Add to cart

Exam (elaborations)

Compilation Booklet of Past Papers for Paper 3 - Pure Mathematics 2 & 3

 31 views  0 purchase

Cambridge International AS & A Level Mathematics 9709: Pure Mathematics 2 & 3 Compilation book of Past Papers for Paper 3 All past papers from 2019 to 2022

Preview 10 out of 796  pages

  • January 25, 2023
  • 796
  • 2022/2023
  • Exam (elaborations)
  • Answers
book image

Book Title:

Author(s):

  • Edition:
  • ISBN:
  • Edition:
All documents for this subject (10)
avatar-seller
SKH392
Cambridge International Examinations
Cambridge International Advanced Level




CANDIDATE
NAME

CENTRE CANDIDATE
*0123456789*




NUMBER NUMBER


MATHEMATICS 9709/03
Paper 3 Pure Mathematics 3 (P3) For Examination from 2017
SPECIMEN PAPER 1 hour 45 minutes
Candidates answer on the Question Paper.
Additional Materials: List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all the questions.
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in
degrees, unless a different level of accuracy is specified in the question.
The use of an electronic calculator is expected, where appropriate.
You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [ ] at the end of each question or part question.
The total number of marks for this paper is 75.




This document consists of 19 printed pages and 1 blank page.


© UCLES 2016 [Turn over

, 2

1 Solve the inequality 2x − 5 > 32x + 1. [4]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................


© UCLES 2016 9709/03/SP/17

, 3

2 Using the substitution u = 3x , solve the equation 3x + 32x = 33x giving your answer correct to 3 significant
figures. [5]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2016 9709/03/SP/17 [Turn over

, 4

3 The angles 1 and & lie between 0Å and 180Å, and are such that
tan 1 − & = 3 and tan 1 + tan & = 1.
Find the possible values of 1 and &. [6]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................



© UCLES 2016 9709/03/SP/17

, 5



................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................



© UCLES 2016 9709/03/SP/17 [Turn over

, 6

4 The equation x3 − x2 − 6 = 0 has one real root, denoted by !.

(i) Find by calculation the pair of consecutive integers between which ! lies. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................


(ii) Show that, if a sequence of values given by the iterative formula
_P Q
6
xn+1 = xn +
xn
converges, then it converges to !. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................


© UCLES 2016 9709/03/SP/17

, 7



........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................


(iii) Use this iterative formula to determine ! correct to 3 decimal places. Give the result of each
iteration to 5 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2016 9709/03/SP/17 [Turn over

, 8

5 The equation of a curve is y = e−2x tan x, for 0 ≤ x < 12 0.

dy
(i) Obtain an expression for and show that it can be written in the form e−2x a + b tan x2 , where
dx
a and b are constants. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................


© UCLES 2016 9709/03/SP/17

, 9



........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................


(ii) Explain why the gradient of the curve is never negative. [1]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................


(iii) Find the value of x for which the gradient is least. [1]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................


© UCLES 2016 9709/03/SP/17 [Turn over

, 10

6 The polynomial 8x3 + ax2 + bx − 1, where a and b are constants, is denoted by p x. It is given that
x + 1 is a factor of p x and that when p x is divided by 2x + 1 the remainder is 1.

(i) Find the values of a and b. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................


© UCLES 2016 9709/03/SP/17

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller SKH392. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for £4.33. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

84251 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy revision notes and other study material for 14 years now

Start selling
£4.33
  • (0)
  Add to cart