P1 - Matter and Radiation P2 - Quarks and Leptons
Particle Charge (C) Rel. Charge Mass (kg) Rel. Mass Particle/ Rel. Rest Energy Interaction
Antiparticle Charge (MeV)
-19 -27
Proton +1.6 x 10 1 1.673 x 10 1 Photon γ 0 0 None
Neutron 0 0 1.675 x 10 -27
1 Neutrino ν 0 0 Weak
Antineutrino ν̅
Electron -1.6 x 10-19 -1 9.11 x 10-31 0.0005 Electron e- -1 0.510999 Weak, electromagnetic
charge Positron e+ +1
Specific Charge = mass (C kg-1)
Muon µ- -1 105.659 Weak, electromagnetic
Electron Specific Charge = 1.76 x 1011 C kg-1
Antimuon µ+ +1
Proton Specific Charge = 9.58 x 107 C kg-1 Pions π±, π0 ±1, 0 139.576 (±), Strong, electromagnetic, weak
1 eV = 1.60 x 10-19 (J) π+ for a π- ±1, 0 134.972 (0)
Atomic Mass Unit, u = 1.661 x 10-27 kg = 931.5 MeV π0 for a π0
Planck Constant, h = 6.63 x 10-34 (J s) Kaons K±, K ±1, 0 493.821 (±), Strong, electromagnetic, weak
8 -1 K+ for a K- ±1, 0 497.762 (0)
Speed of Light, c = 3.00 x 10 (m s )
K0 for a K0
Radio Microwave IR Visible UV X-rays Gamma Proton p +1 938.257 Strong, weak, electromagnetic
> 0.1 m 0.1 m - 1 mm - 700 nm - 400 nm - 10 nm - < 1 nm Antiproton p̅ -1
700 nm 400 nm 1 nm 0.001 nm Neutron n 0 939.551 Strong, weak
1 mm
Antineutron n̅
Wavelength, λ = c (m)
f
hc Property Quarks Antiquarks
Photon Energy, E = hf = (J)
λ
Power of Photon Beam of n Photons per Second, P = nhf (W) Flavour Up u Down d Strange s Up u̅ Down d̅ Strange s̅
Charge Q +2/3 -1/3 -1/3 -2/3 +1/3 +1/3
Strangeness S 0 0 -1 0 0 +1
P3 - Quantum Phenomena
Baryon No. B +1/3 +1/3 +1/3 -1/3 -1/3 -1/3
Energy of a Photoelectron, E = hf = EKmax + φ (J)
φ Lepton Lepton
Threshold Frequency, fmin = (Hz)
h Symbols Number
I -1
Photoelectrons from Cathode to Anode per Second, n = (s )
q Particles e-, νe : μ-, νμ +1
Energy Levels, E = hf = E1 - E2 (eV) + +
Antiparticles e , ν̅e̅ : μ , ν̅μ̅ -1
Hydrogen Energy Level = - 13.62 eV (eV)
n h
De Broglie Wavelength, λ = h = (m)
p mv
P5 - Optics
P4 - Waves Refractive Index of Substance s, n = c
c
s
sin i λ
Refractive Index of Substance s, n = =
Frequency, f = 1 sin r λs
T
1 Snell’s Law of Refraction, n1sinθ1 = n2sinθ2
Time Period, T = (s) n2
f
Critical Angle, sinθc = n for n1 > n2
Wave Speed, c = fλ (m s-1) λD 1
2πd c Fringe Spacing, w = s (m)
Phase Difference = ()
λ λD
Slit Separation, s = (m)
Distance Between Adjacent Nodes = λ (m) w
2
T Double Slit Reinforcement Path Difference = mλ (m)
First Harmonic Frequency, f = 1 (Hz)
2l μ 1
Double Slit Cancellation Path Difference = (m + 2 )λ (m)
2Dλ
Width of Central Fringe, W = a (m)
Diffraction Grating of nth Order, nλ = dsinθ
P6 - Forces in Equilibrium 1
Slits Per Metre, N = (m-1)
d
Magnitude of Resultant of Two Perpendicular Forces, F = (F12 + F22) (N)
F
Angle Between Resultant and F1, tanθ = F2
1
Force Parallel to the Line = Fcosθ (N) P7 - On The Move
Force Perpendicular to the Line = Fsinθ (N) Δs
Speed, v = (m s-1)
Support Force From Object Resting on Horizontal Plane, S = W (N) Δt
2πr
Speed in a Circle, v = (m s-1)
Reaction/Support Force on Sloped Plane, R/S = Wcosθ (N) T
Δv v - u
Acceleration, a = = (m s-2)
For a System in Equilibrium, F1 + F2 + … + Fn = 0 Δt Δt
-1
Final Velocity, v = u + at (m s ) v2 = u2 + 2as (m2 s-2)
Moment of a Force, M = Fd (N s) (v + u)t 2
Displacement, s = = ut + at (m)
For Moments in Equilibrium, F1d1 = F2d2, M1 = M2 (N s) 2 2 2
Displacement, s = vt - at (m)
For Moments Involving Centre of Mass of Beam, W0d0 = W1d1 (N s) 2
Horizontal Component of Projectile Displacement, x = utcosθ (m)
Support Force at Pivot, S = F0 + F1 + F2 (N) gt2
Vertical Component of Projectile Displacement, y = utsinθ - (m)
2
Horizontal Component of Projectile Velocity, vx = ucosθ (m s-1)
Vertical Component of Projectile Velocity, vy = usinθ - gt (m s-1)