ZSO 1.1: Passieve diffusie en het ontstaan van de membraanpotentiaal
Doelstellingen:
o Je kan een eenvoudige beschrijving geven van de plasmamembraan van de biologische cel.
o Je kan kwalitatief aangeven hoe de membraanpotentiaal bij een cel tot stand komt
o Je kan de factoren die bepalend zijn voor de waarde van de rustmembraanpotentiaal opsommen (goldman-Hodgkin-
Katz vergelijking)
o Je kan de betekenis van de Nernstpotentiaal met betrekking tot de passieve beweging van ionen door het
celmembraan definiëren.
o Je kan de factoren die de Nernstpotentiaal bepalen opsommen.
o Je kan de Nernstpotentiaal berekenen met behulp van de uitgebreide en de vereenvoudigde uitdrukking voor de
Nernstpotentiaal.
o Je kan aan de hand van de Nernstpotentiaal en een gegeven rustmembraanpotetniaal de richting van een
ionenbeweging voorspellen.
o Je kan de elektrochemische gradiënt voor een ion definiëren en berekenen.
o Je kan de verschillende manieren waarop moleculen doorheen het celmembraan kunnen diffunderen opsommen en
beschrijven waardoor de diffusiesnelheid wordt bepaald (Wet van Fick).
o Je kan de verschillen tussen de diffusie van vet oplosbare (d.w.z. niet polaire) moleculen en die van wateroplosbare
(d.w.z. polaire) moleculen beschrijven.
o Ja kan gefaciliteerd transport definiëren en de kinetiek van dit transport verklaren.
,ZSO 1.1: Passieve diffusie en het ontstaan van de membraanpotentiaal
Celmembranen bestaan uit een asymmetrische dubbellaag van fosfolipiden. De polaire delen van de fosfolipiden staan
rechtstreeks in contact met het waterige extracellulaire en intracellulaire milieu. De vetzuurstaarten overspannen de dikte van
het membraan. De beweging van membraaneiwitten tussen de fosfolipidendubbellaag kan beschreven worden als een
diffusieproces.
Als selectieve barrière laat het celmembraan gecontroleerde uitwisseling van moleculen toe. De samenstelling van het milieu aan
weerskanten wordt constant gehouden maar verschillen. Het transport van moleculen kan op verschillende manieren gebeuren:
1. Over maar niet doorheen het membraan via endocytose
2. Als passieve diffusie van ongeladen stoffen door de lipiden dubbellaag
3. Als passieve diffusie van ionen door ionenkanalen
4. Middels transporteiwitten die deel uitmaken van het membraan
In dit laatste geval worden diverse typen van transport onderscheiden:
o Gefaciliteerd/gekatalyseerd transport : betreft transporteiwitten die slechts één substantie vervoeren met de
concentratiegradiënt mee. Dit zorgt ervoor dat getransporteerde moleculen in evenwicht komen over het membraan.
o Actief transport : door membraanpompen kan een molecule tegen het concentratie- of energiegradiënt in pompen.
Hiervoor is ATP nodig!
o Cotransport en antiport : substanties kunnen tegen hun gradiënt in worden getransporteerd door gebruik te maken van
het medetransport van een andere substantie, die volgens zijn eigen gradiënt wordt getransporteerd. Dit is secundair
transport.
Over het plasmamembraan van een levende cel staat een elektrisch potentiaalverschil. Het elektrisch potentiaalverschil over
het celmembraan = het rustmembraanpotentiaal, is te wijten aan passieve diffusie van ionen. Drie processen dragen bij tot het
stand komen van de rustmembraanpotentiaal:
1. Diffusie van ionen volgens hun elektrochemische potentiaalgradiënten
2. Het elektrogeen effect van Na + , K + -ATPase
3. Het Gibbs-Donnan effect 1
De configuratie van de fosfolipidendubbellaag vormt de elektrische condensator. Het celmembraan bezit dus het vermogen om
ladingen op te slaan en om een potentiaalverschil te behouden tussen de extra- en intracellulaire ruimten. Endo- en
exocytotische processen kunnen gevolgd worden door verandering in de membraancapaciteit op te meten.
SOMMIGE MEMBRAAN PROTEÏNEN ZIJN MOBIEL IN DE DUBBELLAAG
Zoals geldt voor fosfolipidenmoleculen, kunnen sommige transmembraaneiwitten binnen het oppervlak van het membraan
diffunderen. Bij afwezigheid van enige proteïne-proteïne-aanhechting, zijn transmembraaneiwitten vrij voor diffusie over het
oppervlak van het membraan.
Diffusie van proteïnen duurt langer dan de diffusie van lipiden.
o Sommige membraanproteïnen zijn zelf verankerd aan het cytoskelet waardoor ze immobiel zijn
• Membraanproteïnen kunnen geen flip-flop maken doorheen het membraan, ze blijven aan dezelfde kant van de
dubbellaag liggen
1
Het Gibbs-Donnan effect beschrijft het evenwicht dat ontstaat tussen twee oplossingen die geladen deeltjes, wanneer die van
elkaar gescheiden zijn door een membraan.
, o Er zijn ook motorproteïnen, deze proteïnen worden geassocieerd met het cytoplasmatisch cytoskelet en lijken
transmembranaire eiwitten vast te grijpen en dragen hun doorheen het vlak van het membraan.
De topologie van membraanproteïnen verandert niet tijdens de cel zijn levensduur
EXPERIMENT FRYEEN EDININ (1970)
Tijdens een experiment labelden ze oppervlakte proteïnen van lymfocyten van een populatie muizen met een lactine (een plant
proteïne dat sterk bindt aan bepaalde suikergroepen verbonden aan eiwitten) die gekoppeld kan worden aan een fluorescerende
kleur, fluorescein .
Ook de oppervlakte proteïnen van een humane lymfocyten werden met een lectine gelabeld die gekoppeld kan worden aan een
andere fluorescerence kleur, rhodamine
Wanneer deze twee lymfocyten populaties met elkaar gemixt worden en behandeld worden met een reagent waardoor deze
cellen fuseren tot elkaar, zullen de gelabelde proteïnen na een bepaalde tijd (30 min) verspreid door elkaar zitten over heel de
oppervlakte. De snelheid waarmee dit gebeurt is temperatuur afhankelijk, dit is logisch omdat de membraanvloeibaarheid ook
temperatuur afhankelijk is
FUNCTIE VAN MEMBRAAN PROTEÏNEN
Alle communicatie tussen een cel en zijn omgeving moet het plasmamembraan omvatten of op zijn minst passeren.
Ligandbindende receptoren omvatten de groep transmembraaneiwitten die misschien het duidelijkst het concept van
transmembraansignalering illustreren. Om in wateroplosbare hormonen zoals epinefrine, het cellulair gedrag te beïnvloeden,
moet hun aanwezigheid in het ECF-compartiment bekend worden gemaakt aan de verschillende intracellulaire mechanismen
waarvan ze het gedrag moduleren
o De interactie van een hormoon met het extracellulaire deel van de hormoonreceptor, dat een bindingsplaats met hoge
affiniteit vormt, produceert conformatieveranderingen binnen het receptoreiwit, die zich door het membraan-
overspannende domein naar het intracellulaire domein van de receptor uitstrekken.
• GEVOLG: intracellulair domein wordt ofwel enzymatisch actief of kan het een interactie aangaan met
cytoplasmatische eiwitten die betrokken zijn bij het genereren van zogenaamde second messengers
, TRANSPORT VAN OPGELOSTE STOFFEN DOORHEEN HET CELMEMBRAAN
IN PASSIEF NIET-GEKOPPELD TRANSPORT DOORHEEN EEN PERMEABEL MEMBRAAN ZAL EEN OPLOSSING NAAR ONDER ZIJN
DOOR ELEKTROCHEMISCH GRADIENT BEWEGEN
Als er een pathway bestaat voor het transporteren van een stof doorheen een membraan, dan is het membraan permeabel voor
die stof.
o De drijvende kracht die het passieve transport van de oplossing doorheen het membraan bepaald is de
elektrochemische gradiënt (of het elektrochemisch potentiaal energieverschil). Dit elektrochemisch potentiaal
energieverschil houdt de bijdrage van de concentratiegradiënt van de oplossing in.
Niet gekoppeld transport van een stof X, betekend dat stof X doorheen het membraan niet direct gekoppeld is aan de beweging
van een andere oplossing of aan een andere chemische reactie (dus zonder ATP-hydrolyse)
De passieve netto-beweging van een oplossing X hangt af van het verschil in concentratie tussen intracellulair en extracellulair
en hangt af van het verschil in voltage tussen intracellulair 𝜓! en extracellulair 𝜓" .
Als de concentratie [𝑿]𝒐 hoger is dan [𝑿]𝒊 , er vanuit gaande dat er geen
verschil is in voltage, dan zal het concentratiegradiënt zich gedragen als
drijvende kracht om de netto-beweging van X doorheen het membraan van
buiten naar binnen.
Als [𝑿] hetzelfde is aan beide kanten, maar er is een verschil in voltage
(elektrische potentiële energie aan de buitenkant 𝜓"
≠ binnenkant 𝜓! ), dan is dit voltage verschil de drijvende kracht ook voor de
netto-beweging zorgen, aangezien X geladen is.
De concentratiegradiënt voor X en het voltageverschil doorheen het membraan zijn twee determinanten voor het
elektrochemisch potentiaal energie verschil voor X tussen beide compartimenten. Omdat de beweging van X bij een niet
gekoppeld mechanisme niet gekoppeld is aan een andere oplossing of aan een andere chemische reactie is de elektrochemische
gradiënt voor X de enige drijvende kracht die bijdraagt aan het transport van X
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller SD100. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for £9.75. You're not tied to anything after your purchase.