100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
MATRIX ANALYSIS AND APPLIED LINEAR ALGEBRA £21.09   Add to cart

Exam (elaborations)

MATRIX ANALYSIS AND APPLIED LINEAR ALGEBRA

 5 views  0 purchase
  • Module
  • Institution

Contents Preface. . . . . . . . . . . . . . . . . . . . . . . ix 1. Linear Equations . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . 1 1.2 Gaussian Elimination and Matrices . . . . . . . . 3 1.3 Gauss–Jordan Method . . . . . . . . . . . . . . 15 1.4 Two-Po...

[Show more]

Preview 4 out of 890  pages

  • April 2, 2024
  • 890
  • 2023/2024
  • Exam (elaborations)
  • Questions & answers
avatar-seller
, Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . ix

1. Linear Equations . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . 1
1.2 Gaussian Elimination and Matrices . . . . . . . . 3
1.3 Gauss–Jordan Method . . . . . . . . . . . . . . 15
1.4 Two-Point Boundary Value Problems . . . . . . . 18
1.5 Making Gaussian Elimination Work . . . . . . . . 21
1.6 Ill-Conditioned Systems . . . . . . . . . . . . . 33

2. Rectangular Systems and Echelon Forms . . . 41
2.1 Row Echelon Form and Rank . . . . . . . . . . . 41
2.2 Reduced Row Echelon Form . . . . . . . . . . . 47
2.3 Consistency of Linear Systems . . . . . . . . . . 53
2.4 Homogeneous Systems . . . . . . . . . . . . . . 57
2.5 Nonhomogeneous Systems . . . . . . . . . . . . 64
2.6 Electrical Circuits . . . . . . . . . . . . . . . . 73

3. Matrix Algebra . . . . . . . . . . . . . . 79
3.1 From Ancient China to Arthur Cayley . . . . . . . 79
3.2 Addition and Transposition . . . . . . . . . . . 81
3.3 Linearity . . . . . . . . . . . . . . . . . . . . 89
3.4 Why Do It This Way . . . . . . . . . . . . . . 93
3.5 Matrix Multiplication . . . . . . . . . . . . . . 95
3.6 Properties of Matrix Multiplication . . . . . . . 105
3.7 Matrix Inversion . . . . . . . . . . . . . . . 115
3.8 Inverses of Sums and Sensitivity . . . . . . . . 124
3.9 Elementary Matrices and Equivalence . . . . . . 131
3.10 The LU Factorization . . . . . . . . . . . . . 141

4. Vector Spaces . . . . . . . . . . . . . . . 159
4.1 Spaces and Subspaces . . . . . . . . . . . . . 159
4.2 Four Fundamental Subspaces . . . . . . . . . . 169
4.3 Linear Independence . . . . . . . . . . . . . 181
4.4 Basis and Dimension . . . . . . . . . . . . . 194

,vi Contents

4.5 More about Rank . . . . . . . . . . . . . . . 210
4.6 Classical Least Squares . . . . . . . . . . . . 223
4.7 Linear Transformations . . . . . . . . . . . . 238
4.8 Change of Basis and Similarity . . . . . . . . . 251
4.9 Invariant Subspaces . . . . . . . . . . . . . . 259

5. Norms, Inner Products, and Orthogonality . . 269
5.1 Vector Norms . . . . . . . . . . . . . . . . 269
5.2 Matrix Norms . . . . . . . . . . . . . . . . 279
5.3 Inner-Product Spaces . . . . . . . . . . . . . 286
5.4 Orthogonal Vectors . . . . . . . . . . . . . . 294
5.5 Gram–Schmidt Procedure . . . . . . . . . . . 307
5.6 Unitary and Orthogonal Matrices . . . . . . . . 320
5.7 Orthogonal Reduction . . . . . . . . . . . . . 341
5.8 Discrete Fourier Transform . . . . . . . . . . . 356
5.9 Complementary Subspaces . . . . . . . . . . . 383
5.10 Range-Nullspace Decomposition . . . . . . . . 394
5.11 Orthogonal Decomposition . . . . . . . . . . . 403
5.12 Singular Value Decomposition . . . . . . . . . 411
5.13 Orthogonal Projection . . . . . . . . . . . . . 429
5.14 Why Least Squares? . . . . . . . . . . . . . . 446
5.15 Angles between Subspaces . . . . . . . . . . . 450

6. Determinants . . . . . . . . . . . . . . . 459
6.1 Determinants . . . . . . . . . . . . . . . . . 459
6.2 Additional Properties of Determinants . . . . . . 475

7. Eigenvalues and Eigenvectors . . . . . . . . 489
7.1 Elementary Properties of Eigensystems . . . . . 489
7.2 Diagonalization by Similarity Transformations . . 505
7.3 Functions of Diagonalizable Matrices . . . . . . 525
7.4 Systems of Differential Equations . . . . . . . . 541
7.5 Normal Matrices . . . . . . . . . . . . . . . 547
7.6 Positive Definite Matrices . . . . . . . . . . . 558
7.7 Nilpotent Matrices and Jordan Structure . . . . 574
7.8 Jordan Form . . . . . . . . . . . . . . . . . 587
7.9 Functions of Nondiagonalizable Matrices . . . . . 599

, Contents vii

7.10 Difference Equations, Limits, and Summability . . 616
7.11 Minimum Polynomials and Krylov Methods . . . 642

8. Perron–Frobenius Theory . . . . . . . . . 661
8.1 Introduction . . . . . . . . . . . . . . . . . 661
8.2 Positive Matrices . . . . . . . . . . . . . . . 663
8.3 Nonnegative Matrices . . . . . . . . . . . . . 670
8.4 Stochastic Matrices and Markov Chains . . . . . 687

Index . . . . . . . . . . . . . . . . . . . . . . 705

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller THEEXCELLENCELIBRARY. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for £21.09. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

79202 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy revision notes and other study material for 14 years now

Start selling
£21.09
  • (0)
  Add to cart