100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
MATH 233 - Linear Algebra I Questions with 100% Actual correct answers | verified | latest update | Graded A+ | Already Passed | Complete Solution £6.46   Add to cart

Exam (elaborations)

MATH 233 - Linear Algebra I Questions with 100% Actual correct answers | verified | latest update | Graded A+ | Already Passed | Complete Solution

 9 views  0 purchase

MATH 233 - Linear Algebra I Questions with 100% Actual correct answers | verified | latest update | Graded A+ | Already Passed | Complete Solution

Preview 4 out of 206  pages

  • June 24, 2024
  • 206
  • 2023/2024
  • Exam (elaborations)
  • Questions & answers
All documents for this subject (182)
avatar-seller
Hkane
MATH 233 - Linear Algebra I
Lecture Notes
Cesar O. Aguilar


Department of Mathematics
SUNY Geneseo

,
, Lecture 0




Contents

1 Systems of Linear Equations 1
1.1 What is a system of linear equations? . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Solving linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Geometric interpretation of the solution set . . . . . . . . . . . . . . . . . . 8

2 Row Reduction and Echelon Forms 11
2.1 Row echelon form (REF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Reduced row echelon form (RREF) . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Existence and uniqueness of solutions . . . . . . . . . . . . . . . . . . . . . . 17

3 Vector Equations 19
3.1 Vectors in Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 The linear combination problem . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 The span of a set of vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 The Matrix Equation Ax = b 31
4.1 Matrix-vector multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Matrix-vector multiplication and linear combinations . . . . . . . . . . . . . 33
4.3 The matrix equation problem . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Homogeneous and Nonhomogeneous Systems 41
5.1 Homogeneous linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Nonhomogeneous systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Linear Independence 49
6.1 Linear independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 The maximum size of a linearly independent set . . . . . . . . . . . . . . . . 53

7 Introduction to Linear Mappings 57
7.1 Vector mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 Linear mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.3 Matrix mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3

, CONTENTS


8 Onto, One-to-One, and Standard Matrix 67
8.1 Onto Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2 One-to-One Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.3 Standard Matrix of a Linear Mapping . . . . . . . . . . . . . . . . . . . . . . 71

9 Matrix Algebra 75
9.1 Sums of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.2 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.3 Matrix Transpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

10 Invertible Matrices 83
10.1 Inverse of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
10.2 Computing the Inverse of a Matrix . . . . . . . . . . . . . . . . . . . . . . . 85
10.3 Invertible Linear Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

11 Determinants 89
11.1 Determinants of 2 × 2 and 3 × 3 Matrices . . . . . . . . . . . . . . . . . . . . 89
11.2 Determinants of n × n Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 93
11.3 Triangular Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

12 Properties of the Determinant 97
12.1 ERO and Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
12.2 Determinants and Invertibility of Matrices . . . . . . . . . . . . . . . . . . . 100
12.3 Properties of the Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . 100

13 Applications of the Determinant 103
13.1 The Cofactor Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
13.2 Cramer’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
13.3 Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

14 Vector Spaces 109
14.1 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
14.2 Subspaces of Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

15 Linear Maps 117
15.1 Linear Maps on Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 117
15.2 Null space and Column space . . . . . . . . . . . . . . . . . . . . . . . . . . 121

16 Linear Independence, Bases, and Dimension 125
16.1 Linear Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
16.2 Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
16.3 Dimension of a Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

17 The Rank Theorem 133
17.1 The Rank of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller Hkane. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for £6.46. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

62890 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy revision notes and other study material for 14 years now

Start selling
£6.46
  • (0)
  Add to cart