3. NT = necessarily true, NNT = Not necessarily true. Given: 2 < x < 6.
a) NNT. 5 is a counter example.
b) NT. 2 < x < 6 Ê 2 2 < x 2 < 6 2 Ê 0 < x 2 < 2.
c) NT. 2 < x < 6 Ê 2/2 < x/2 < 6/2 Ê 1 < x < 3.
d) NT. 2 < x < 6 Ê 1/2 > 1/x > 1/6 Ê 1/6 < 1/x < 1/2.
e) NT. 2 < x < 6 Ê 1/2 > 1/x > 1/6 Ê 1/6 < 1/x < 1/2 Ê 6(1/6) < 6(1/x) < 6(1/2) Ê 1 < 6/x < 3.
f) NT. 2 < x < 6 Ê x < 6 Ê (x 4) < 2 and 2 < x < 6 Ê x > 2 Ê x < 2 Ê x + 4 < 2 Ê (x 4) < 2.
The pair of inequalities (x 4) < 2 and (x 4) < 2 Ê | x 4 | < 2.
g) NT. 2 < x < 6 Ê 2 > x > 6 Ê 6 < x < 2. But 2 < 2. So 6 < x < 2 < 2 or 6 < x < 2.
h) NT. 2 < x < 6 Ê 1(2) > 1(x) < 1(6) Ê 6 < x < 2
4. NT = necessarily true, NNT = Not necessarily true. Given: 1 < y 5 < 1.
a) NT. 1 < y 5 < 1 Ê 1 + 5 < y 5 + 5 < 1 + 5 Ê 4 < y < 6.
b) NNT. y = 5 is a counter example. (Actually, never true given that 4 y 6)
c) NT. From a), 1 < y 5 < 1, Ê 4 < y < 6 Ê y > 4.
d) NT. From a), 1 < y 5 < 1, Ê 4 < y < 6 Ê y < 6.
e) NT. 1 < y 5 < 1 Ê 1 + 1 < y 5 + 1 < 1 + 1 Ê 0 < y 4 < 2.
f) NT. 1 < y 5 < 1 Ê (1/2)(1 + 5) < (1/2)(y 5 + 5) < (1/2)(1 + 5) Ê 2 < y/2 < 3.
g) NT. From a), 4 < y < 6 Ê 1/4 > 1/y > 1/6 Ê 1/6 < 1/y < 1/4.
h) NT. 1 < y 5 < 1 Ê y 5 > 1 Ê y > 4 Ê y < 4 Ê y + 5 < 1 Ê (y 5) < 1.
Also, 1 < y 5 < 1 Ê y 5 < 1. The pair of inequalities (y 5) < 1 and (y 5) < 1 Ê | y 5 | < 1.
5. 2x 4 Ê x 2
6. 8 3x 5 Ê 3x 3 Ê x Ÿ 1 ïïïïïïïïïñqqqqqqqqp x
1
7. 5x $ Ÿ ( 3x Ê 8x Ÿ 10 Ê x Ÿ 5
4
8. 3(2 x) 2(3 x) Ê 6 3x 6 2x
Ê 0 5x Ê 0 x ïïïïïïïïïðqqqqqqqqp x
0
"
9. 2x # 7x 7
6 Ê "# 7
6 5x
Ê "
5
ˆ 10 ‰
6 x or "
3 x
6 x 3x4
10. 4 2 Ê 12 2x 12x 16
Ê 28 14x Ê 2 x qqqqqqqqqðïïïïïïïïî x
2
,2 Chapter 1 Preliminaries
"
11. 4
5 (x 2) 3 (x 6) Ê 12(x 2) 5(x 6)
Ê 12x 24 5x 30 Ê 7x 6 or x 67
12. x2 5 Ÿ 123x
4 Ê (4x 20) Ÿ 24 6x
Ê 44 Ÿ 10x Ê 22
5 Ÿ x qqqqqqqqqñïïïïïïïïî x
22/5
13. y œ 3 or y œ 3
14. y 3 œ 7 or y 3 œ 7 Ê y œ 10 or y œ 4
15. 2t 5 œ 4 or 2t & œ 4 Ê 2t œ 1 or 2t œ 9 Ê t œ "# or t œ 9#
16. 1 t œ 1 or 1 t œ 1 Ê t œ ! or t œ 2 Ê t œ 0 or t œ 2
17. 8 3s œ 9
2 or 8 3s œ #9 Ê 3s œ 7# or 3s œ 25
# Ê sœ
7
6 or s œ 25
6
18. s
# 1 œ 1 or s
# 1 œ 1 Ê s
# œ 2 or s
# œ ! Ê s œ 4 or s œ 0
19. 2 x 2; solution interval (2ß 2)
20. 2 Ÿ x Ÿ 2; solution interval [2ß 2] qqqqñïïïïïïïïñqqqqp x
2 2
21. 3 Ÿ t 1 Ÿ 3 Ê 2 Ÿ t Ÿ 4; solution interval [2ß 4]
22. 1 t 2 1 Ê 3 t 1;
solution interval (3ß 1) qqqqðïïïïïïïïðqqqqp t
3 1
23. % 3y 7 4 Ê 3 3y 11 Ê 1 y 11
3 ;
solution interval ˆ1ß 11 ‰
3
24. 1 2y 5 " Ê 6 2y 4 Ê 3 y 2;
solution interval (3ß 2) qqqqðïïïïïïïïðqqqqp y
3 2
25. 1 Ÿ z
5 1Ÿ1 Ê 0Ÿ z
5 Ÿ 2 Ê 0 Ÿ z Ÿ 10;
solution interval [0ß 10]
26. 2 Ÿ 1 Ÿ 2 Ê 1 Ÿ
3z
#
3z
# Ÿ 3 Ê 32 Ÿ z Ÿ 2;
solution interval 23 ß 2‘ qqqqñïïïïïïïïñqqqqp z
2/3 2
27. "# 3 "
x "
# Ê 7# x" 5# Ê 7
# "
x 5
#
Ê 2
7 x 2
5 ; solution interval ˆ 27 ß 25 ‰
"
28. 3 2
x 43 Ê 1 2
x ( Ê 1 x
# 7
Ê 2x 2
7 Ê 2
7 x 2; solution interval ˆ 27 ß 2‰ qqqqðïïïïïïïïðqqqqp x
2/7 2
, Section 1.1 Real Numbers and the Real Line 3
29. 2s 4 or 2s 4 Ê s 2 or s Ÿ 2;
solution intervals (_ß 2] [2ß _)
" "
30. s 3 # or (s 3) # Ê s 5# or s 7
#
Ê s 5# or s Ÿ 7# ;
solution intervals ˆ_ß 7# ‘ 5# ß _‰ ïïïïïïñqqqqqqñïïïïïïî s
7/2 5/2
31. 1 x 1 or (" x) 1 Ê x 0 or x 2
Ê x 0 or x 2; solution intervals (_ß !) (2ß _)
32. 2 3x 5 or (2 3x) 5 Ê 3x 3 or 3x 7
Ê x 1 or x 73 ;
solution intervals (_ß 1) ˆ 73 ß _‰ ïïïïïïðqqqqqqðïïïïïïî x
1 7/3
33. r"
# 1 or ˆ r# 1 ‰ 1 Ê r1 2 or r 1 Ÿ 2
Ê r 1 or r Ÿ 3; solution intervals (_ß 3] [1ß _)
34. 3r
5 " 2
5 or ˆ 3r5 "‰ 2
5
Ê 3r
5
or 3r5 53 Ê r 37 or r 1
7
5
solution intervals (_ß ") ˆ 73 ß _‰ ïïïïïïðqqqqqqðïïïïïïî r
1 7/3
35. x# # Ê kxk È2 Ê È2 x È2 ;
solution interval ŠÈ2ß È2‹ qqqqqqðïïïïïïðqqqqqqp x
È # È#
36. 4 Ÿ x# Ê 2 Ÿ kxk Ê x 2 or x Ÿ 2;
solution interval (_ß 2] [2ß _) ïïïïïïñqqqqqqñïïïïïïî r
2 2
37. 4 x# 9 Ê 2 kxk 3 Ê 2 x 3 or 2 x 3
Ê 2 x 3 or 3 x 2;
solution intervals (3ß 2) (2ß 3) qqqqðïïïïðqqqqðïïïïðqqqp x
3 2 2 3
" " " " " " " "
38. 9 x# 4 Ê 3 kxk # Ê 3 x # or 3 x #
" "
Ê 3 x or #" x 3" ;
#
solution intervals ˆ "# ß 3" ‰ ˆ 3" ß #" ‰ qqqqðïïïïðqqqqðïïïïðqqqp x
1/2 1/3 1/3 1/2
39. (x 1)# 4 Ê kx 1k 2 Ê 2 x 1 2
Ê 1 x 3; solution interval ("ß $) qqqqqqðïïïïïïïïðqqqqp x
1 3
40. (x 3)# # Ê kx 3k È2
Ê È2 x 3 È2 or 3 È2 x 3 È2 ;
solution interval Š3 È2ß 3 È2‹ qqqqqqðïïïïïïïïðqqqqp x
3 È # 3 È #
, 4 Chapter 1 Preliminaries
Ê ˆx 12 ‰ <
2
41. x# x 0 Ê x# x + 1
4 < 1
4
1
4 ʹx 1
2 ¹< 1
2 Ê 12 < x 1
2 < 1
2 Ê 0 < x < 1.
So the solution is the interval (0ß 1)
42. x# x 2 0 Ê x# x + 1
4
9
4 Ê ¹x 1
2 ¹ 3
2 Ê x 1
2
3
2 or ˆx 12 ‰ 3
2 Ê x 2 or x Ÿ 1.
The solution interval is (_ß 1] [2ß _)
43. True if a 0; False if a 0.
44. kx 1k œ 1 x Í k(x 1)k œ 1 x Í 1 x 0 Í xŸ1
45. (1) ka bk œ (a b) or ka bk œ (a b);
both squared equal (a b)#
(2) ab Ÿ kabk œ kak kbk
(3) kak œ a or kak œ a, so kak# œ a# ; likewise, kbk# œ b#
(4) x# Ÿ y# implies Èx# Ÿ Èy# or x Ÿ y for all nonnegative real numbers x and y. Let x œ ka bk and
y œ kak kbk so that ka bk# Ÿ akak kbkb# Ê ka bk Ÿ kak kbk .
46. If a 0 and b 0, then ab 0 and kabk œ ab œ kak kbk .
If a 0 and b 0, then ab 0 and kabk œ ab œ (a)(b) œ kak kbk .
If a 0 and b 0, then ab Ÿ 0 and kabk œ (ab) œ (a)(b) œ kak kbk .
If a 0 and b 0, then ab Ÿ 0 and kabk œ (ab) œ (a)(b) œ kak kbk .
47. 3 Ÿ x Ÿ 3 and x "# Ê "
# x Ÿ 3.
48. Graph of kxk kyk Ÿ 1 is the interior
of “diamond-shaped" region.
49. Let $ be a real number > 0 and f(x) = 2x + 1. Suppose that | x1 | < $ . Then | x1 | < $ Ê 2| x1 | < 2$ Ê
| 2x # | < 2$ Ê | (2x + 1) 3 | < 2$ Ê | f(x) f(1) | < 2$
50. Let % > 0 be any positive number and f(x) = 2x + 3. Suppose that | x 0 | < % /2. Then 2| x 0 | < % and
| 2x + 3 3 | < %. But f(x) = 2x + 3 and f(0) = 3. Thus | f(x) f(0) | < %.
51. Consider: i) a > 0; ii) a < 0; iii) a = 0.
i) For a > 0, | a | œ a by definition. Now, a > 0 Ê a < 0. Let a = b. By definition, | b | œ b. Since b = a,
| a | œ (a) œ a and | a | œ | a | œ a.
ii) For a < 0, | a | œ a. Now, a < 0 Ê a > 0. Let a œ b. By definition, | b | œ b and thus |a| œ a. So again
| a | œ |a|.
iii) By definition | 0 | œ 0 and since 0 œ 0, | 0 | œ 0. Thus, by i), ii), and iii) | a | œ | a | for any real number.
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller NurseAdvocate. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for £12.24. You're not tied to anything after your purchase.