100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Test Bank For Thomas calculus 11th edition solution manual All Chapters Included £12.24   Add to cart

Exam (elaborations)

Test Bank For Thomas calculus 11th edition solution manual All Chapters Included

 10 views  0 purchase
  • Module
  • Institution
  • Book

CHAPTER 1 PRELIMINARIES 1.1 REAL NUMBERS AND THE REAL LINE 1. Executing long division, 0.1, 0.2, 0.3, 0.8, 0.9 " 9 9 9 9 9 œ œ œ œ œ 2 3 8 9 2. Executing long division, 0.09, 0.18, 0.27, 0.81, 0. 11 " œ œ œ œ œ 2 3 9 11 3. NT = necessarily true, NNT = Not necessarily true. Given: 2 &l...

[Show more]

Preview 4 out of 1057  pages

  • September 7, 2024
  • 1057
  • 2024/2025
  • Exam (elaborations)
  • Questions & answers
avatar-seller
CHAPTER 1 PRELIMINARIES

1.1 REAL NUMBERS AND THE REAL LINE
"
1. Executing long division, 9 œ 0.1, 2
9 œ 0.2, 3
9 œ 0.3, 8
9 œ 0.8, 9
9 œ 0.9

"
2. Executing long division, 11 œ 0.09, 2
11 œ 0.18, 3
11 œ 0.27, 9
11 œ 0.81, 11
11 œ 0.99

3. NT = necessarily true, NNT = Not necessarily true. Given: 2 < x < 6.
a) NNT. 5 is a counter example.
b) NT. 2 < x < 6 Ê 2  2 < x  2 < 6  2 Ê 0 < x  2 < 2.
c) NT. 2 < x < 6 Ê 2/2 < x/2 < 6/2 Ê 1 < x < 3.
d) NT. 2 < x < 6 Ê 1/2 > 1/x > 1/6 Ê 1/6 < 1/x < 1/2.
e) NT. 2 < x < 6 Ê 1/2 > 1/x > 1/6 Ê 1/6 < 1/x < 1/2 Ê 6(1/6) < 6(1/x) < 6(1/2) Ê 1 < 6/x < 3.
f) NT. 2 < x < 6 Ê x < 6 Ê (x  4) < 2 and 2 < x < 6 Ê x > 2 Ê x < 2 Ê x + 4 < 2 Ê (x  4) < 2.
The pair of inequalities (x  4) < 2 and (x  4) < 2 Ê | x  4 | < 2.
g) NT. 2 < x < 6 Ê 2 > x > 6 Ê 6 < x < 2. But 2 < 2. So 6 < x < 2 < 2 or 6 < x < 2.
h) NT. 2 < x < 6 Ê 1(2) > 1(x) < 1(6) Ê 6 < x < 2

4. NT = necessarily true, NNT = Not necessarily true. Given: 1 < y  5 < 1.
a) NT. 1 < y  5 < 1 Ê 1 + 5 < y  5 + 5 < 1 + 5 Ê 4 < y < 6.
b) NNT. y = 5 is a counter example. (Actually, never true given that 4  y  6)
c) NT. From a), 1 < y  5 < 1, Ê 4 < y < 6 Ê y > 4.
d) NT. From a), 1 < y  5 < 1, Ê 4 < y < 6 Ê y < 6.
e) NT. 1 < y  5 < 1 Ê 1 + 1 < y  5 + 1 < 1 + 1 Ê 0 < y  4 < 2.
f) NT. 1 < y  5 < 1 Ê (1/2)(1 + 5) < (1/2)(y  5 + 5) < (1/2)(1 + 5) Ê 2 < y/2 < 3.
g) NT. From a), 4 < y < 6 Ê 1/4 > 1/y > 1/6 Ê 1/6 < 1/y < 1/4.
h) NT. 1 < y  5 < 1 Ê y  5 > 1 Ê y > 4 Ê y < 4 Ê y + 5 < 1 Ê (y  5) < 1.
Also, 1 < y  5 < 1 Ê y  5 < 1. The pair of inequalities (y  5) < 1 and (y  5) < 1 Ê | y  5 | < 1.


5. 2x  4 Ê x  2

6. 8  3x 5 Ê 3x 3 Ê x Ÿ 1 ïïïïïïïïïñqqqqqqqqp x
1

7. 5x  $ Ÿ (  3x Ê 8x Ÿ 10 Ê x Ÿ 5
4


8. 3(2  x)  2(3  x) Ê 6  3x  6  2x
Ê 0  5x Ê 0  x ïïïïïïïïïðqqqqqqqqp x
0

"
9. 2x  # 7x  7
6 Ê  "#  7
6 5x
Ê "
5
ˆ 10 ‰
6 x or  "
3 x

6 x 3x4
10. 4  2 Ê 12  2x  12x  16
Ê 28  14x Ê 2  x qqqqqqqqqðïïïïïïïïî x
2

,2 Chapter 1 Preliminaries
"
11. 4
5 (x  2)  3 (x  6) Ê 12(x  2)  5(x  6)
Ê 12x  24  5x  30 Ê 7x  6 or x   67

12.  x2 5 Ÿ 123x
4 Ê (4x  20) Ÿ 24  6x
Ê 44 Ÿ 10x Ê  22
5 Ÿ x qqqqqqqqqñïïïïïïïïî x
22/5

13. y œ 3 or y œ 3

14. y  3 œ 7 or y  3 œ 7 Ê y œ 10 or y œ 4

15. 2t  5 œ 4 or 2t  & œ 4 Ê 2t œ 1 or 2t œ 9 Ê t œ  "# or t œ  9#

16. 1  t œ 1 or 1  t œ 1 Ê t œ ! or t œ 2 Ê t œ 0 or t œ 2

17. 8  3s œ 9
2 or 8  3s œ  #9 Ê 3s œ  7# or 3s œ  25
# Ê sœ
7
6 or s œ 25
6


18. s
#  1 œ 1 or s
#  1 œ 1 Ê s
# œ 2 or s
# œ ! Ê s œ 4 or s œ 0


19. 2  x  2; solution interval (2ß 2)

20. 2 Ÿ x Ÿ 2; solution interval [2ß 2] qqqqñïïïïïïïïñqqqqp x
2 2

21. 3 Ÿ t  1 Ÿ 3 Ê 2 Ÿ t Ÿ 4; solution interval [2ß 4]

22. 1  t  2  1 Ê 3  t  1;
solution interval (3ß 1) qqqqðïïïïïïïïðqqqqp t
3 1

23. %  3y  7  4 Ê 3  3y  11 Ê 1  y  11
3 ;
solution interval ˆ1ß 11 ‰
3


24. 1  2y  5  " Ê 6  2y  4 Ê 3  y  2;
solution interval (3ß 2) qqqqðïïïïïïïïðqqqqp y
3 2

25. 1 Ÿ z
5 1Ÿ1 Ê 0Ÿ z
5 Ÿ 2 Ê 0 Ÿ z Ÿ 10;
solution interval [0ß 10]

26. 2 Ÿ  1 Ÿ 2 Ê 1 Ÿ
3z
#
3z
# Ÿ 3 Ê  32 Ÿ z Ÿ 2;
solution interval  23 ß 2‘ qqqqñïïïïïïïïñqqqqp z
2/3 2

27.  "#  3  "
x  "
# Ê  7#   x"   5# Ê 7
#  "
x  5
#

Ê 2
7 x 2
5 ; solution interval ˆ 27 ß 25 ‰


"
28. 3  2
x 43 Ê 1 2
x ( Ê 1 x
#  7

Ê 2x 2
7 Ê 2
7  x  2; solution interval ˆ 27 ß 2‰ qqqqðïïïïïïïïðqqqqp x
2/7 2

, Section 1.1 Real Numbers and the Real Line 3

29. 2s 4 or 2s 4 Ê s 2 or s Ÿ 2;
solution intervals (_ß 2]  [2ß _)

" "
30. s  3 # or (s  3) # Ê s  5# or s 7
#
Ê s  5# or s Ÿ  7# ;
solution intervals ˆ_ß  7# ‘   5# ß _‰ ïïïïïïñqqqqqqñïïïïïïî s
7/2 5/2

31. 1  x  1 or ("  x)  1 Ê x  0 or x  2
Ê x  0 or x  2; solution intervals (_ß !)  (2ß _)

32. 2  3x  5 or (2  3x)  5 Ê 3x  3 or 3x  7
Ê x  1 or x  73 ;
solution intervals (_ß 1)  ˆ 73 ß _‰ ïïïïïïðqqqqqqðïïïïïïî x
1 7/3

33. r"
# 1 or  ˆ r# 1 ‰ 1 Ê r1 2 or r  1 Ÿ 2
Ê r 1 or r Ÿ 3; solution intervals (_ß 3]  [1ß _)

34. 3r
5 " 2
5 or  ˆ 3r5  "‰  2
5
Ê 3r
5 
or  3r5   53 Ê r  37 or r  1
7
5
solution intervals (_ß ")  ˆ 73 ß _‰ ïïïïïïðqqqqqqðïïïïïïî r
1 7/3

35. x#  # Ê kxk  È2 Ê È2  x  È2 ;
solution interval ŠÈ2ß È2‹ qqqqqqðïïïïïïðqqqqqqp x
È # È#


36. 4 Ÿ x# Ê 2 Ÿ kxk Ê x 2 or x Ÿ 2;
solution interval (_ß 2]  [2ß _) ïïïïïïñqqqqqqñïïïïïïî r
2 2

37. 4  x#  9 Ê 2  kxk  3 Ê 2  x  3 or 2  x  3
Ê 2  x  3 or 3  x  2;
solution intervals (3ß 2)  (2ß 3) qqqqðïïïïðqqqqðïïïïðqqqp x
3 2 2 3

" " " " " " " "
38. 9  x#  4 Ê 3  kxk  # Ê 3 x # or 3  x  #
" "
Ê 3 x or  #"  x   3" ;
#
solution intervals ˆ "# ß  3" ‰  ˆ 3" ß #" ‰ qqqqðïïïïðqqqqðïïïïðqqqp x
1/2 1/3 1/3 1/2

39. (x  1)#  4 Ê kx  1k  2 Ê 2  x  1  2
Ê 1  x  3; solution interval ("ß $) qqqqqqðïïïïïïïïðqqqqp x
1 3

40. (x  3)#  # Ê kx  3k  È2
Ê È2  x  3  È2 or 3  È2  x  3  È2 ;
solution interval Š3  È2ß 3  È2‹ qqqqqqðïïïïïïïïðqqqqp x
3  È # 3  È #

, 4 Chapter 1 Preliminaries

Ê ˆx  12 ‰ <
2
41. x#  x  0 Ê x#  x + 1
4 < 1
4
1
4 ʹx  1
2 ¹< 1
2 Ê  12 < x  1
2 < 1
2 Ê 0 < x < 1.
So the solution is the interval (0ß 1)


42. x#  x  2 0 Ê x#  x + 1
4
9
4 Ê ¹x  1
2 ¹ 3
2 Ê x 1
2
3
2 or ˆx  12 ‰ 3
2 Ê x 2 or x Ÿ 1.
The solution interval is (_ß 1]  [2ß _)

43. True if a 0; False if a  0.

44. kx  1k œ 1  x Í k(x  1)k œ 1  x Í 1  x 0 Í xŸ1

45. (1) ka  bk œ (a  b) or ka  bk œ (a  b);
both squared equal (a  b)#
(2) ab Ÿ kabk œ kak kbk
(3) kak œ a or kak œ a, so kak# œ a# ; likewise, kbk# œ b#
(4) x# Ÿ y# implies Èx# Ÿ Èy# or x Ÿ y for all nonnegative real numbers x and y. Let x œ ka  bk and
y œ kak  kbk so that ka  bk# Ÿ akak  kbkb# Ê ka  bk Ÿ kak  kbk .

46. If a 0 and b 0, then ab 0 and kabk œ ab œ kak kbk .
If a  0 and b  0, then ab  0 and kabk œ ab œ (a)(b) œ kak kbk .
If a 0 and b  0, then ab Ÿ 0 and kabk œ (ab) œ (a)(b) œ kak kbk .
If a  0 and b 0, then ab Ÿ 0 and kabk œ (ab) œ (a)(b) œ kak kbk .

47. 3 Ÿ x Ÿ 3 and x   "# Ê  "
#  x Ÿ 3.

48. Graph of kxk  kyk Ÿ 1 is the interior
of “diamond-shaped" region.




49. Let $ be a real number > 0 and f(x) = 2x + 1. Suppose that | x1 | < $ . Then | x1 | < $ Ê 2| x1 | < 2$ Ê
| 2x  # | < 2$ Ê | (2x + 1)  3 | < 2$ Ê | f(x)  f(1) | < 2$

50. Let % > 0 be any positive number and f(x) = 2x + 3. Suppose that | x  0 | < % /2. Then 2| x  0 | < % and
| 2x + 3 3 | < %. But f(x) = 2x + 3 and f(0) = 3. Thus | f(x)  f(0) | < %.

51. Consider: i) a > 0; ii) a < 0; iii) a = 0.
i) For a > 0, | a | œ a by definition. Now, a > 0 Ê a < 0. Let a = b. By definition, | b | œ b. Since b = a,
| a | œ (a) œ a and | a | œ | a | œ a.
ii) For a < 0, | a | œ a. Now, a < 0 Ê a > 0. Let a œ b. By definition, | b | œ b and thus |a| œ a. So again
| a | œ |a|.
iii) By definition | 0 | œ 0 and since 0 œ 0, | 0 | œ 0. Thus, by i), ii), and iii) | a | œ | a | for any real number.

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller NurseAdvocate. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for £12.24. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

77254 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy revision notes and other study material for 14 years now

Start selling
£12.24
  • (0)
  Add to cart