100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Solutions for A Course in Ordinary Differential Equations, 2nd Edition by Wirkus (All Chapters included) £24.12   Add to cart

Exam (elaborations)

Solutions for A Course in Ordinary Differential Equations, 2nd Edition by Wirkus (All Chapters included)

 5 views  0 purchase
  • Module
  • A Course in Ordinary Differential Equations 2e
  • Institution
  • A Course In Ordinary Differential Equations 2e

Complete Solutions Manual for A Course in Ordinary Differential Equations, 2nd Edition by Stephen A. Wirkus; Randall J. Swift ; ISBN13: 9781032917498.....(Full Chapters are included)...1.Traditional First-Order Differential Equations 2.Geometrical and Numerical Methods for First-Order Equations 3...

[Show more]

Preview 4 out of 296  pages

  • November 14, 2024
  • 296
  • 2024/2025
  • Exam (elaborations)
  • Questions & answers
  • A Course in Ordinary Differential Equations 2e
  • A Course in Ordinary Differential Equations 2e
avatar-seller
solutions MANUAL FOR
A Course in
Ordinary
Differential
Equations, Second
Edition
by

Stephen A. Wirkus and
Randall J. Swift

** Immediate Download
** Swift Response
** All Chapters included




K14712_SM_Cover.indd 1 05/11/

, Contents


1 Traditional First-Order Differential Equations 1
1.1 Introduction to First-Order Differential Equations . . . . . . 1
1.2 Separable Differential Equations . . . . . . . . . . . . . . . . 6
1.3 Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 Some Physical Models Arising as Seperable Equations . . . . 22
1.5 Exact Equations . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6 Special Integrating Factors and Substitution Methods . . . . 35
Chapter 1 Review . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2 Geometrical and Numerical Methods for First-Order Equa-
tions 59
2.1 Direction Fields—the Geometry of Differential Equations . . 59
2.2 Existence and Uniqueness for First-Order Equations . . . . . 65
2.3 First-Order Autonomous Equations—Geometrical Insight . . 67
2.4 Modeling in Population Biology . . . . . . . . . . . . . . . . 83
2.5 Numerical Approximation: Euler and Runge-Kutta Methods 86
2.6 An Introduction to Autonomous Second-Order Equations . . 91
Chapter 2 Review . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3 Elements of Higher-Order Linear Equations 101
3.1 Introduction to Higher-Order Equations . . . . . . . . . . . . 101
3.2 Linear Independence and the Wronskian . . . . . . . . . . . 104
3.3 Reduction of Order—The Case of n = 2 . . . . . . . . . . . . 110
3.4 Numerical Considerations for nth-Order Equations . . . . . . 113
3.5 Essential Topics from Complex Variables . . . . . . . . . . . 119
3.6 Homogeneous Equations with Constant Coefficients . . . . . 123
3.7 Mechanical and Electrical Vibrations . . . . . . . . . . . . . 130
Chapter 3 Review . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4 Techniques of Nonhomogeneous Higher-Order Linear Equa-
tions 141
4.1 Nonhomogeneous Equations . . . . . . . . . . . . . . . . . . 141
4.2 Method of Undetermined Coefficients via Superposition . . . 144
4.3 Method of Undetermined Coefficients via Annihilation . . . . 152
4.4 Exponential Response and Complex Replacement . . . . . . 161
4.5 Variation of Parameters . . . . . . . . . . . . . . . . . . . . . 166
4.6 Cauchy-Euler (Equidimensional) Equation . . . . . . . . . . 177


v




K14712_SM_Cover.indd 7 05/11/

, vi

4.7 Forced Vibrations . . . . . . . . . . . . . . . . . . . . . . . . 183
Chapter 4 Review . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5 Fundamentals of Systems of Differential Equations 189
5.1 Useful Terminology . . . . . . . . . . . . . . . . . . . . . . . 189
5.2 Gaussian Elimination . . . . . . . . . . . . . . . . . . . . . . 192
5.3 Vector Spaces and Subspaces . . . . . . . . . . . . . . . . . . 193
5.4 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . 197
5.5 A General Method, Part I: Solving Systems with Real & Dis-
tinct or Complex Eigenvalues . . . . . . . . . . . . . . . . . . 202
5.6 A General Method, Part II: Solving Systems with Repeated
Real Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . 205
5.7 Matrix Exponentials . . . . . . . . . . . . . . . . . . . . . . . 210
5.8 Solving Linear Nonhomogeneous Systems of Equations . . . 212
Chapter 5 Review . . . . . . . . . . . . . . . . . . . . . . . . . . 215

6 Geometrical Approaches and Applications of Systems of Dif-
ferential Equations 223
6.1 An Introduction to the Phase Plane . . . . . . . . . . . . . . 223
6.2 Nonlinear Equations and Phase Plane Analysis . . . . . . . . 227
6.3 Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
6.4 Epidemiological Models . . . . . . . . . . . . . . . . . . . . . 235
6.5 Models in Ecology . . . . . . . . . . . . . . . . . . . . . . . . 239
Chapter 6 Review . . . . . . . . . . . . . . . . . . . . . . . . . . 244

7 Laplace Transforms 249
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.2 Fundamentals of the Laplace Transform . . . . . . . . . . . . 250
7.3 The Inverse Laplace Transform . . . . . . . . . . . . . . . . . 252
7.4 Translated Functions, Delta Function, and Periodic Functions 254
7.5 The s-Domain and Poles . . . . . . . . . . . . . . . . . . . . 256
7.6 Solving Linear Systems using Laplace Transforms . . . . . . 259
7.7 The Convolution . . . . . . . . . . . . . . . . . . . . . . . . . 259
Chapter 7 Review . . . . . . . . . . . . . . . . . . . . . . . . . . 261

8 Series Methods 267
8.1 Power Series Representations of Functions . . . . . . . . . . 267
8.2 The Power Series Method . . . . . . . . . . . . . . . . . . . . 270
8.3 Ordinary and Singular Points . . . . . . . . . . . . . . . . . . 271
8.4 The Method of Frobenius . . . . . . . . . . . . . . . . . . . . 272
8.5 Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . . . 274
Chapter 8 Review . . . . . . . . . . . . . . . . . . . . . . . . . . 277

A An Introduction to MATLAB, Maple, and Mathematica 279




K14712_SM_Cover.indd 8 05/11/

, B Selected Topics from Linear Algebra 281
B.1 A Primer on Matrix Algebra . . . . . . . . . . . . . . . . . . 281
B.2 Matrix Inverses, and Cramer’s Rule . . . . . . . . . . . . . . 283
B.3 Linear Transformations . . . . . . . . . . . . . . . . . . . . . 287
B.4 Coordinates and Change of Basis . . . . . . . . . . . . . . . 289




K14712_SM_Cover.indd 9 05/11/

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller mizhouubcca. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for £24.12. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67474 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy revision notes and other study material for 14 years now

Start selling

Recently viewed by you


£24.12
  • (0)
  Add to cart