100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Instructor’s Solutions Manual Elementary Linear Algebra with Applications Ninth Edition Bernard Kolman £11.81   Add to cart

Exam (elaborations)

Instructor’s Solutions Manual Elementary Linear Algebra with Applications Ninth Edition Bernard Kolman

 2 views  0 purchase
  • Module
  • Institution

Contents Preface iii 1 Linear Equations and Matrices 1 1.1 Systems of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Matrix Multiplic...

[Show more]

Preview 4 out of 172  pages

  • November 16, 2024
  • 172
  • 2024/2025
  • Exam (elaborations)
  • Questions & answers
avatar-seller
Instructor’s Solutions Manual


Elementary Linear
Algebra with
Applications
Ninth Edition




Bernard Kolman
Drexel University


David R. Hill
Temple University

,Editorial Director, Computer Science, Engineering, and Advanced Mathematics: Marcia J. Horton
Senior Editor: Holly Stark
Editorial Assistant: Jennifer Lonschein
Senior Managing Editor/Production Editor: Scott Disanno
Art Director: Juan López
Cover Designer: Michael Fruhbeis
Art Editor: Thomas Benfatti
Manufacturing Buyer: Lisa McDowell
Marketing Manager: Tim Galligan
Cover Image: (c) William T. Williams, Artist, 1969 Trane, 1969 Acrylic on canvas, 108!! × 84!! .
Collection of The Studio Museum in Harlem. Gift of Charles Cowles, New York.




c 2008, 2004, 2000, 1996 by Pearson Education, Inc.
"
Pearson Education, Inc.
Upper Saddle River, New Jersey 07458

c 1991, 1986, 1982, by KTI;
Earlier editions "
1977, 1970 by Bernard Kolman




All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in
writing from the publisher.




Printed in the United States of America
10 9 8 7 6 5 4 3 2 1




ISBN 0-13-229655-1




Pearson Education, Ltd., London
Pearson Education Australia PTY. Limited, Sydney
Pearson Education Singapore, Pte., Ltd
Pearson Education North Asia Ltd, Hong Kong
Pearson Education Canada, Ltd., Toronto
Pearson Educación de Mexico, S.A. de C.V.
Pearson Education—Japan, Tokyo
Pearson Education Malaysia, Pte. Ltd

,Contents

Preface iii

1 Linear Equations and Matrices 1
1.1 Systems of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Algebraic Properties of Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Special Types of Matrices and Partitioned Matrices . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Matrix Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7 Computer Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.8 Correlation Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Solving Linear Systems 27
2.1 Echelon Form of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Solving Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Elementary Matrices; Finding A−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Equivalent Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 LU -Factorization (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Determinants 37
3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Properties of Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Cofactor Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Inverse of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Other Applications of Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Real Vector Spaces 45
4.1 Vectors in the Plane and in 3-Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 Span and Linear Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6 Basis and Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7 Homogeneous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.8 Coordinates and Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.9 Rank of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

, ii CONTENTS

Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Inner Product Spaces 71
5.1 Standard Inner Product on R2 and R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Cross Product in R3 (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Inner Product Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4 Gram-Schmidt Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5 Orthogonal Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.6 Least Squares (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Linear Transformations and Matrices 93
6.1 Definition and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Kernel and Range of a Linear Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3 Matrix of a Linear Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.4 Vector Space of Matrices and Vector Space of Linear Transformations (Optional) . . . . . . . 99
6.5 Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.6 Introduction to Homogeneous Coordinates (Optional) . . . . . . . . . . . . . . . . . . . . . . 103
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Eigenvalues and Eigenvectors 109
7.1 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2 Diagonalization and Similar Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3 Diagonalization of Symmetric Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8 Applications of Eigenvalues and Eigenvectors (Optional) 129
8.1 Stable Age Distribution in a Population; Markov Processes . . . . . . . . . . . . . . . . . . . 129
8.2 Spectral Decomposition and Singular Value Decomposition . . . . . . . . . . . . . . . . . . . 130
8.3 Dominant Eigenvalue and Principal Component Analysis . . . . . . . . . . . . . . . . . . . . 130
8.4 Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.5 Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.6 Real Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.7 Conic Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.8 Quadric Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

10 MATLAB Exercises 137

Appendix B Complex Numbers 163
B.1 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
B.2 Complex Numbers in Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller AcademicSuperScores. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for £11.81. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

75323 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy revision notes and other study material for 14 years now

Start selling
£11.81
  • (0)
  Add to cart