100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
Apuntes Mates II 6,19 €
Añadir al carrito

Notas de lectura

Apuntes Mates II

 0 veces vendidas

. (.)

Vista previa 4 fuera de 34  páginas

  • 17 de febrero de 2023
  • 34
  • 2022/2023
  • Notas de lectura
  • No se
  • Todas las clases
Todos documentos para esta materia (3)
avatar-seller
isabelsaorin
Matemáticas II.
2º Bachillerato.
Capítulo 6: Geometría
métrica en el espacio




www.apuntesmareaverde.org.es




Autores: Leticia González Pascual y Álvaro Valdés Menéndez
Revisores: Milagros Latasa Asso y Luis Carlos Vidal Del Campo
Todas las imágenes han sido creadas por los
autores utilizando software libre (GeoGebra y GIMP)

,185 Geometría métrica en el espacio
Índice
1. ÁNGULOS EN EL ESPACIO
1.1. ÁNGULO ENTRE DOS RECTAS
1.2. ÁNGULO ENTRE UNA RECTA Y UN PLANO
1.3. ÁNGULO ENTRE DOS PLANOS
1.4. PARALELISMO, PERPENDICULARIDAD Y POSICIONES RELATIVAS

2. PROYECCIONES ORTOGONALES
2.1. PROYECCIÓN ORTOGONAL DE UN PUNTO SOBRE UNA RECTA
2.2. PROYECCIÓN ORTOGONAL DE UN PUNTO SOBRE UN PLANO
2.2. PROYECCIÓN ORTOGONAL DE UNA RECTA SOBRE UN PLANO

3. PUNTOS SIMÉTRICOS
3.1. SIMÉTRICO DE UN PUNTO RESPECTO DE OTRO PUNTO
3.2. SIMÉTRICO DE UN PUNTO RESPECTO DE UNA RECTA
3.3. SIMÉTRICO DE UN PUNTO RESPECTO DE UN PLANO
3.4. POSICIONES RELATIVAS DE DOS RECTAS EN EL ESPACIO

4. DISTANCIAS EN EL ESPACIO
4.1. DISTANCIA ENTRE DOS PUNTOS
4.2. DISTANCIA DE UN PUNTO A UNA RECTA
4.3. DISTANCIA DE UN PUNTO A UN PLANO
4.4. DISTANCIA ENTRE DOS PLANOS
4.5. DISTANCIA ENTRE UNA RECTA Y UN PLANO
4.6. DISTANCIA ENTRE DOS RECTAS


Resumen
En este último capítulo de geometría en dimensión tres vamos a ser
capaces de resolver problemas de cálculo de distancias, de ángulos,
de proyecciones… utilizando todo lo aprendido en los anteriores
capítulos de geometría.




2º de Bachillerato. Matemáticas II. Capítulo 7: Geometría métrica en el espacio Autores: Leticia González y Álvaro Valdés
Revisores: Milagros Latasa Asso y Luis Carlos Vidal Del Campo
www.apuntesmareaverde.org.es Imágenes creadas por los autores

,186 Geometría métrica en el espacio
1. ÁNGULOS EN EL ESPACIO
1.1. Ángulo entre dos rectas
Sabemos que la dirección de una recta viene dada por su vector director. Con ello, podemos deducir:
El ángulo que forman dos rectas es el ángulo agudo determinado por los vectores directores de dichas
rectas.

Sean las rectas r y s, con vectores directores respectivos u y

v , tenemos:
   
u v u v
cos       r , s   arc cos  
u  v u  v


Actividad resuelta
Halla el ángulo determinado por las rectas
x  1  
 x3 z2
r : y  2  3  y s:  y 1  .
 5 1
z  2 
De las ecuaciones deducimos fácilmente que los vectores directores de r y s son, respectivamente:
 
u   1, 3, 2  y v  5, 1,  1
Por tanto:
 
u   1  3 2  2 2  14
2

  4 4
v  5 2  12   1  27   cos   
2

    14  27 378
u  v   1,3,2   5,1, 1  5  3  2  4  u  v   4  4

 4 
De aquí: r , s   arc cos    78º
 378 

1.2. Ángulo entre una recta y un plano
Al contrario que en el apartado anterior, la dirección del vector asociado al plano (su vector normal) es
perpendicular al propio plano. Por tanto, en este caso debemos razonar que:
El ángulo que forman una recta y un plano es el complementario del ángulo agudo que forman el
vector director de la recta y el vector normal del plano.


Sea la recta r, con vector director u y el plano , con

vector normal n , tenemos:
   
u n u n
cos       r ,    90 º  arc cos  
u  n u  n




2º de Bachillerato. Matemáticas II. Capítulo 7: Geometría métrica en el espacio Autores: Leticia González y Álvaro Valdés
Revisores: Milagros Latasa Asso y Luis Carlos Vidal Del Campo
www.apuntesmareaverde.org.es Imágenes creadas por los autores

, 187 Geometría métrica en el espacio
Actividad resuelta
x3 z 1
Halla el ángulo determinado por la recta r :  y4 y el plano  : 5 x  y  3 z  1  0 .
2 2
 
Sea u   2, 1, 2  un vector director de r y n  5,  1, 3  un vector normal de .
Tenemos:
 
u   2  12  2 2  9  3
2

  5 5
n  5 2   1  3 2  35   cos   
2

    3  35 3 35
u  n   2,1,2  5,1,3  10  1  6  5  u  n   5  5

 5 
De aquí: r ,   90º arc cos    90º 74º  16º
 3 35 
1.3. Ángulo entre dos planos
En este caso los dos vectores normales son perpendiculares a los respectivos planos, de modo que:
El ángulo formado por dos planos es el ángulo agudo determinado por los vectores normales de dichos
planos.

Sean los planos  y , con vectores normales
 
respectivos n y n, tenemos:
   
n  n n  n
cos       , '  arc cos  
n  n n  n


Actividad resuelta
Halla el ángulo formado por los planos
x  1    2 
 : 2x  y  z  4  0 
y   : y  2  2    .
z     2 

Sea n  2,  1, 1 un vector normal de  , y hallamos el vector normal de  con el producto vectorial de
sus vectores directores:
  
i j k
     
n  u  v  1  2  1  5 i  0 j  5 k
2 1 2
Calculamos:
|𝑛⃗| 2 1 1 √6
𝑛⃗ ′
5 0 5 5 ⋅ √2 ⇒
𝑛⃗ ⋅ 𝑛⃗ ′
2, 1, 1 ⋅ 5, 0, 5 10 0 5 15 ⇒ 𝑛⃗ ⋅ 𝑛⃗ ′ | 15| 15
15 3
cos   
6 5 2 2

Por lo tanto: 𝛼 𝜋, 𝜋 ′ arc cos 30º
2º de Bachillerato. Matemáticas II. Capítulo 7: Geometría métrica en el espacio Autores: Leticia González y Álvaro Valdés
Revisores: Milagros Latasa Asso y Luis Carlos Vidal Del Campo
www.apuntesmareaverde.org.es Imágenes creadas por los autores

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller isabelsaorin. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for 6,19 €. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 15 years now

Empieza a vender
6,19 €
  • (0)
Añadir al carrito
Añadido