100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting eigenschappen en stellingen: Hogere Wiskunde 1 €8,99
In winkelwagen

Samenvatting

Samenvatting eigenschappen en stellingen: Hogere Wiskunde 1

2 beoordelingen
 346 keer bekeken  26 keer verkocht

Dit is een samenvatting van alle eigenschappen stellingen die gekend moeten zijn voor het examen Hogere Wiskunde 1.

Voorbeeld 4 van de 38  pagina's

  • 21 november 2021
  • 38
  • 2021/2022
  • Samenvatting
Alle documenten voor dit vak (2)

2  beoordelingen

review-writer-avatar

Door: julesverbeeck • 11 maanden geleden

review-writer-avatar

Door: richardvandeuren • 1 jaar geleden

avatar-seller
amelie_vd
Hoofdstuk I: “De bouwstenen”
I.1 Wiskundige taal, notaties en bewijzen
Definitie: nieuwe verzamelingen uit twee verzamelingen A en B
❖ Unie = de verzameling van objecten die behoren tot A of B.
➢ A ⋃ B = {x | x ϵA of x ε B}

❖ Doorsnede = de verzameling van objecten die behoren tot A en B.
➢ A ∩ B = {x | x ε A en x ε B}

❖ Verschil = de verzameling van objecten die behoren tot A maar niet tot B.
➢ A\B = {x | x ε A en x ∉ B}

❖ Cartesiaans product = de productverzameling van de koppels (= geordende
tweetallen (a,b)) waarbij a behoort tot A en b behoort tot B.
➢ A X B = {x | a ε A en b ε B}



Propositie: basiseigenschappen van orde en vermenigvuldiging in R
1) Voor alle reële getallen x, y en z geldt: als x < y en y < z, dan is x < z

2) Voor alle reële getallen x, y en z geldt: als x < y en z > 0 dan is xz < yz



Regels voor het bewijzen
Directe bewijzen
Bewering die begint met ∃ (“er bestaat een”) → geef een expliciet voorbeeld
Bewering die begint met ∀ (“voor alle geldt”) → begin met “Kies een willekeurige …”

Bewijzen door gevalsonderscheid → gevallen onderscheiden

Bewijzen door contrapositie
Om uitspraak p ⇒ q te bewijzen, is het soms handiger om (niet p) ⇒ (niet q) te bewijzen.

Bewijzen uit het ongerijmde
Veronderstel dat het te bewijzene niet waar is en leidt zo een contradictie af.

Bewijzen met inductie
1) Start: 1 ϵ S
2) Inductiehypothese
3) Inductiestap




1

,I.2 Getallenverzamelingen
De structuur van Q
Eigenschappen van de optelling in Q
1) + is associatief: COMMUTATIEVE
∀𝑥, 𝑦, 𝑧: (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) GROEP
2) 0 is neutraal element: ∀𝑥: 𝑥 + 0 = 𝑥 = 0 + 𝑥
3) ∀𝑥, ∃𝑦: 𝑥 + 𝑦 = 0 = 𝑦 + 𝑥
4) + is commutatief: ∀𝑥, 𝑦: 𝑥 + 𝑦 = 𝑦 + 𝑥

Eigenschappen van de vermenigvuldiging in Q
5) ・is associatief: ∀𝑥, 𝑦, 𝑧: (𝑥𝑦) 𝑧 = 𝑥 (𝑦𝑧) COMMUTATIEVE
6) 0 is neutraal element: ∀𝑥: 𝑥1 = 𝑥 = 1𝑥 GROEP
7) ∀𝑥, ∃𝑦: 𝑥𝑦 = 1 = 𝑦𝑥
8) ・is commutatief: ∀𝑥, 𝑦: 𝑥𝑦 = 𝑦𝑥

Eigenschap die ・verbindt met + 1→9
9) ・is distributief tov +: VELD
∀𝑥, 𝑦, 𝑧: 𝑥(𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧)

Eigenschappen die de bewerkingen verbinden met de orde 1 → 11
10) ∀𝑥, 𝑦, 𝑧: 𝑥 ≤ 𝑦 ⇒ 𝑥 + 𝑧 ≤ 𝑦 + 𝑧
11) ∀𝑥, 𝑦, 𝑧: (𝑥 ≤ 𝑦 𝑒𝑛 0 ≤ 𝑧) ⇒ 𝑥𝑧 ≤ 𝑦𝑧 GEORDEND VELD

Eigenschap verschil tussen orde op N en Z en die op Q TOTAAL GEORDEND
12) ∀𝑥, 𝑦: 𝑥 ≤ 𝑦 𝑜𝑓 𝑦 ≤ 𝑥 VELD

Eigenschap verschil tussen orde op N en Z en die op Q DICHT TOTAAL
12) ∀𝑥, 𝑦 𝑚𝑒𝑡 𝑥 < 𝑦, ∃𝑧: 𝑥 < 𝑧 < 𝑦 GEORDEND VELD



Proposities: begrensdheid van een niet-lege deelverzameling A
❖ A is naar boven begrensd door x: ∀𝑎 ε 𝐴: 𝑎 ≤ 𝑥 Als A een majorant en minorant
❖ A is naar onder begrensd door x: ∀𝑎 ε 𝐴: 𝑥 ≤ 𝑎 heeft, noemen we ze begrensd.

❖ A heeft een maximum M: ∀𝑎, 𝑀 ϵ 𝐴: 𝑎 ≤ 𝑀 Een max. en min. moeten tot A
❖ A heeft een minimum m: ∀𝑎, 𝑚 ϵ 𝐴: 𝑚 ≤ 𝑎 behoren.

❖ A heeft een infimum als A een grootste Als A een max. en min. heeft of
ondergrens heeft. begrensd is, dan heeft A een
❖ A heeft een supremum als A een kleinste infimum en een supremum.
bovengrens heeft. Omgekeerd geldt dit niet.




2

,Propositie: de structuur van R
R heeft de supremumeigenschap R is het enige
12) dat hieraan
∀𝐴 𝑐 𝑅, 𝐴 ≠ φ, 𝐴 𝑖𝑠 𝑛𝑎𝑎𝑟 𝑏𝑜𝑣𝑒𝑛 𝑏𝑒𝑔𝑟𝑒𝑛𝑠𝑑 ⇒ 𝑠𝑢𝑝(𝐴) 𝑏𝑒𝑠𝑡𝑎𝑎𝑡 𝑖𝑛 𝑅 voldoet.
12)
∀𝐴 𝑐 𝑅, 𝐴 ≠ φ, 𝐴 𝑖𝑠 𝑛𝑎𝑎𝑟 𝑜𝑛𝑑𝑒𝑟 𝑏𝑒𝑔𝑟𝑒𝑛𝑠𝑑 ⇒ 𝑖𝑛𝑓(𝐴) 𝑏𝑒𝑠𝑡𝑎𝑎𝑡 𝑖𝑛 𝑅



Definitie: de verzameling Q in R
Q is dicht in R: 𝐴𝑙𝑠 𝑥, 𝑦 ϵ 𝑅 𝑒𝑛 𝑥 < 𝑦, 𝑑𝑎𝑛 𝑏𝑒𝑠𝑡𝑎𝑎𝑡 𝑒𝑟 𝑒𝑒𝑛 𝑞 ϵ 𝑄 𝑧𝑜𝑑𝑎𝑡 𝑥 < 𝑞 < 𝑦.



Definitie: Binomium van Newton
Als 𝑎, 𝑏 ϵ 𝑅 𝑒𝑛 𝑛 ϵN0. Dan is



Binominiaalcoëfficiënt:




Propositie: eigenschap voor Binomium van Newton




3

, Definitie: intervallen
Interval = een niet lege deelverzameling I van R waarvoor elk element van R dat tussen
twee elementen van I ligt, tot I behoort.
❖ 𝐴𝑙𝑠 𝑧 ϵ 𝑅 𝑒𝑛 𝑥, 𝑦 ϵ 𝐼 𝑧𝑜𝑑𝑎𝑡 𝑥 ≤ 𝑧 ≤ 𝑦, 𝑑𝑎𝑛 𝑚𝑜𝑒𝑡 𝑧 ϵ 𝐼.

1) Open interval = als A leeg is of als er rond elk punt 𝑎 ϵ 𝐴 een open interval bestaat
dat helemaal in A ligt.
❖ 𝐴𝑙𝑠 𝑒𝑟 𝑣𝑜𝑜𝑟 𝑒𝑙𝑘𝑒 𝑎 ϵ 𝐴 𝑒𝑒𝑛 δ > 0 𝑏𝑒𝑠𝑡𝑎𝑎𝑡 𝑧𝑜𝑑𝑎𝑡 ]𝑎 − δ, 𝑎 + δ[ ⊆ 𝐴.

2) Gesloten interval = als en slechts als R\A open is.



Propositie: oefening 4 (p32)
Als A naar beneden begrensd is, dan is -A naar boven begrensd en sup(-A) = -inf(A).



Propositie: oefening 6 (p32)
❖ 𝐴𝑙𝑠 𝑎 ≤ 𝑏 𝑒𝑛 0 ≤ 𝑐, 𝑑𝑎𝑛 𝑖𝑠 𝑎𝑐 ≤ 𝑏𝑑.
❖ 𝐴𝑙𝑠 𝑎 ≤ 𝑏, 𝑑𝑎𝑛 𝑖𝑠 − 𝑎 ≥ − 𝑏.



Algebraïsche structuur van Rn (op natuurlijke manier rekenen)
Definitie: vectorruimte
V is een vectorruimte over R. Rn is dus een vectorruimte over R. De elementen van Rn
noemt men daarom ook vectoren.



Definitie: de basis van Rn
Standaardbasisvectoren in Rn




Lineaire combinatie van de vectoren e1, e2, e3, … , en :


Een basis van Rn = elke deelverzameling van vectoren uit Rn waarvoor elke x ε Rn op juist
één manier geschreven kan worden als lineaire combinatie van die vecoren.
➢ Standaardbasis van Rn = de basis van Rn met de standaardbasisvectoren.


4

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper amelie_vd. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €8,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 48298 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€8,99  26x  verkocht
  • (2)
In winkelwagen
Toegevoegd