100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Wiskunde = Wijs ! - wiskunde €8,49
In winkelwagen

Samenvatting

Samenvatting Wiskunde = Wijs ! - wiskunde

 27 keer bekeken  2 keer verkocht

In deze samenvatting vind je de theorie voor het deel van wiskunde, getallenkennis.

Voorbeeld 4 van de 35  pagina's

  • Ja
  • 20 december 2023
  • 35
  • 2021/2022
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (4)
avatar-seller
lottevenken
1. Talstelsels
Inhoud p. 18 – 24, didactiek p. 293 – 300
1.1. Inleiding
https://www.youtube.com/watch?v=i47kLczP-4w&feature=emb_logo
1.2. Soorten talstelsels (p. 18 + 293)
Talstelsel = wiskundig systeem om getallen voor te stellen.
Voor de uitvinding van getallen:
 Kiezelsteentjes.
 Kerfstok.
 Turven.
Voorbeelden:
Positietalstelsels Additieve
talstelsels
Tiendelige of decimale De Egyptenaren
stelsel
De Babyloniërs De Romeinen
De Maya’s
https://www.youtube.com/watch?v=CceQwWJ6vrs
1.2.1.Het tiendelige talstelsel (p. 20 + p. 293 – 297)
Ons talstelsel wordt het tiendelige of decimale stelsel genoemd omdat het grondtal 10 is
en we bijgevolg per 10 groeperen.
Tien Arabisch-Indische cijfers: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 → je kan hiermee oneindig veel
getallen mee vormen.
Positiestelsel = de waarde van elk cijfer wordt bepaald door de plaats of positie van het
cijfer.
Positietabel:
Notatie … TD D H T E t h d …
2 0 5 7 3 1
1 2 3 4 5 6 7 8
Oefening tijdens de les:
 In het bakje liggen een aantal knikkers.
o Hoe kan ik te weten komen hoeveel knikkers er in dit bakje zitten?
o Welke problemen kan je ondervinden bij het tellen?
 Om te vermijden dat we hoeveelheden foutief gaan tellen kunnen we dit best
gestructureerd aanpakken met bv. doosjes, zakjes, bekers, …
 Groeperen per 10. Omdat alles 10 heeft, 10 vingers/tenen. Dit is het grondtal of de
basis van het talstelsel.
 Machten van 10 = vermenigvuldigen met het grondtal 10.
1e leerjaar:
 De leerlingen maken kennis met het tiendelige stelsel (zonder gebruik van het
begrip).
 Invoeren MAB-materiaal, abacus, …
1

,Schrijfwijze van getallen (p. 20 – 21)
 Tot het getal 1 000 schrijf je het volledige getal in 1 woord (365 =
driehonderdvijfenzestig).
 Ook het duizendtal schrijf je aan elkaar gevolgd door een spatie en dan de rest van
het getal in 1 woord (3 789 = drieduizend zevenhonderdnegenentachtig).
 Bij miljoen en miljard schrijf je eerst het aantal, dan een spatie en dan het woord
‘miljoen’ of ‘miljard’ (3 165 203 = drie miljoen honderdvijfenzestigduizend
tweehonderdendrie).
 Boven de 1 000 lees je het getal in groepjes van 3 en na elk groepje benoem je de
rang (123 456 789 012 = honderddrieëntwintig miljard vierhonderdzesenvijftig
miljoen zevenhonderdnegenentachtigduizend en twaalf).
1.2.2.De Babyloniërs (p. 19)
Zestigtallig talstelsel = er gaan 60 minuten in een uur en 60 seconden in een minuut
(spijkerschrift).




Voorbeelden:




1.2.3.De Maya’s (p. 19)
Basis of grondgetal = 20.




2

,1.2.4.De Egyptenaren
Hiërogliefen:
Voorbeelden:




1.2.5.De Romeinen (p. 23 – 24 + 297 – 300) Symbo Waard
 Als gelijke cijfers naast elkaar staan, tellen we hun waarden op, ol e
maar: I 1
o V, L en D volgen zichzelf nooit op. V 5
o Eenzelfde cijfer schrijven we max 3x na elkaar. X 10
 Als cijfers met een kleinere waarde rechts staan van een cijfer L 50
met een hogere waarde, dan tellen we hun waarden op bij de C 100
hogere waarde (bv.: VIII  8) D 500
 Als een cijfer met een kleinere waarde links staat van een M 1 000
cijfer met een hogere waarde, dan trekken we de waarde van het linker cijfer af van
zijn opvolger, maar:
o I, X en C mogen enkel links staan van hun vijfvoud en tienvoud.
o Twee op elkaar volgende cijfers mogen nooit een lagere waarde hebben dan
de waarde van het daaropvolgende cijfer.



 Staat er boven een Romeins getal:
3

, o 1 streep, dan wordt dat getal vermenigvuldigd met 1 000.
o 2 strepen, dan wordt dat getal vermenigvuldigd met 1 000 000.
o 3 strepen, dan wordt dat getal vermenigvuldigd met 1 000 000 000.
 Indien mogelijk gebruiken we de hoofdsymbolen en niet de nevensymbolen.
TIP: splits de getallen steeds in eenheden, tientalen, honderdtallen, …
1.3. Andere talstelsels (p. 21 – 22)
 Binair of tweetallige talstelsel.
 Octale talstelsel (8).
 Hexadecimale talstelsel (16).
 Twaalftallige talstelsel.
 Zestigtallig talstelsel.
1.4. Talstelsels met een ander grondtal
1.4.1.Omzetting van ons talstelsel naar een ander
Stelsel grondtal 10 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9).
Stelsel grondtal 4  0, 1, 2 en 3  45 =
(231)4
 Groepjes van 4? 45 : 4 = 11 + rest
1
 Groepjes van 4 x 4? 11 : 4 = 2 +
rest 3
 Groepjes van 4 x 4 x 4? 2 : 4 = 0 + rest 2
Je rest is het resultaat!
Stelsel grondtal 12  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A en B  83 = (6B)12
A = 10, B = 11.
 Groepjes van 12? 83 : 12 = 6 + rest B
 Groepjes van 12 x 12? 6 : 12 = 0 + rest 6
Je rest is het resultaat!
1.4.2.Omzetting van ander stelsel naar ons stelsel
Stelsel grondtal 8  0, 1, 2, 3, 4, 5, 6, 7  (237)8 = 15910
 Groepjes van 8 x 8 of 8²? 2
 Groepjes van 8 of 81? 3
 Losse of 80? 7
1.4.3. Omzetting van een stelsel zoeken
Stelsel grondtal y  y < 10, y > 4, y ≥ 5  18 = (24)y
 Losse of y0? 4
 Groepjes van y of y1? 2
 18 = (4 x y0) + (2 x y1)
18 = 4 + 2y
18 – 4 = 2 y
14 = 2y
14 : 2 = y

4

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper lottevenken. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €8,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 47561 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€8,49  2x  verkocht
  • (0)
In winkelwagen
Toegevoegd