100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten
logo-home
Samenvatting Statistiek HT 8-11 (tussentijdse test) €3,99
In winkelwagen

Samenvatting

Samenvatting Statistiek HT 8-11 (tussentijdse test)

 2 keer verkocht

Samenvatting Statistiek I Hoofdstuk 8 t.e.m. Hoofdstuk 11 (leerstof te kennen voor tussentijdse test) Samenvatting van het boek: Statistisch gezien - Van beschrijving naar Inzicht

Voorbeeld 4 van de 43  pagina's

  • Ja
  • 22 mei 2019
  • 43
  • 2018/2019
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (3)
avatar-seller
xenabeyers
Statistiek I – semester 2 “van lot naar kans”



HOOFDSTUK 8: MAYBE YES MAYBE NO
1 VAN LOT NAAR KANS
Beschrijvende statistiek = het beschrijven van de gegevens van een steekproef of populatie met behulp
van tabellen, grafieken en kengetallen. (zie semester 1)

Inferentiële statistiek = op basis van steekproefgegevens uitspraken doen over de populatie, inferenties
maken (semester 2)

Kansberekening
Waarom? De mens wil in toenemende mate onzekerheid vatten en inzicht verkrijgen in de kansen op
bepaalde gebeurtenissen. (vb. verzekeringsmaatschappijen, beleidsmakers…)

Maar: we zijn hier intuïtief hel slecht in (vb. het werk van Kahneman, de Gamblers Fallacy1)



2 DE TAAL VAN DE KANS: BASISBEGRIPPEN
stochastisch proces / toevalsproces / kansexperiment = een proces waarvan de uitkomsten onzeker zijn
<-> deterministisch proces = een proces waarvan de uitkomsten zeker zijn (vb. uur van zonsondergang)

Kwantitatieve kansrekening: geen interesse in deterministische processen
 synoniem: stochastiek
 kansvariabelen worden ‘stochasten’ genoemd (hoofdletter X)

Toevaslgebeuren / gebeurtenis = een specifieke (groep van) uitkomst(en) van een stochastisch proces
 elementair toevasgebeuren: slechts één uitkomst vb. A = { 1 }
 samengesteld toevalsgebeuren: heeft betrekking op meerdere elementaire toevalsgebeurens van
het stochastisch proces vb. B = { 2,4,6 }
 elk toevalsgebeuren x i is een deelverzameling of partitie uit de uitkomstenruimte S: x i ⊂ S
o G 1= {1 } , G 2={ 2,4,6 } en G 3= {3,5 } vormen een partitie/volledig stelsel, want ze zijn
exhaustief (G 1 ∪ G 2 ∪ G 3={ 1,2,3,4,5,6 } =S ) en twee-aan-twee-disjunct (lege
doorsnedes)

Uitkomstenruimte S = de verzameling van alle mogelijke elementaire toevalsgebeurens die horen bij een
bepaald stochastisch proces, ‘de verzameling van alle mogelijke uitkomsten van een kansexperiment’
 S komt van Sample Space en drukt uit dat het gaat om alle mogelijke uitkomsten die in
aanmerking komen voor een steekproef uit deze verzameling
 S bevat alle mogelijke elementaire toevalsgebeurens, dus het is een exhaustief stelsel
 De elementaire toevalsgebeurens van S vormen een volledig stelsel, dus ze zijn mutueel exclusief
en exhaustief
 Voorbeeld: voor het stochastisch proces ‘opgooien eerlijke dobbelsteen en registreren aantal
ogen’ is S = { 1, 2,3, 4, 5, 6 }

Verzameling = een duidelijk afgebakend geheel van objecten, waarbij de objecten (= elementen) aan
bepaalde voorwaarden moeten voldoen om tot die verzameling te behoren. Een verzameling wordt
afgekort d.m.v. een hoofdletter en een opsomming geeft vervolgens weer welke elementen ertoe
behoren.
Voorbeeld: A = { a , b , c , d , e }
1
Gamblers Fallacy: “Je hebt al 3x 6 gegooid met een dobbelsteen. De kans dat je nog een 4 de keer 6 gooit is
miniem.”  FOUT! De kans is nog steeds 1/6. Elke worp is onafhankelijk van de voorgaande worp.


1

,Statistiek I – semester 2 “van lot naar kans”


Soorten verzamelingen
 Lege verzameling
o De verzameling bevat geen enkel element
o Symbool: ϕ (‘fi’)
o Voorbeeld: er bestaat geen natuurlijk getal dat strikt kleiner is dan 2 en tegelijkertijd ook
minstens 4 bedraagt  D = { x ∈ N |x< 2 en x ≥ 4 } =ϕ
 Een singleton
o De verzameling bevat slechts één element
o Voorbeeld: E = { 1 }
o Voorbeeld: F = { x ∈ N |x ≤ 2 en x>1 }
 Gelijke verzameling
o Twee verzamelingen bevatten exact dezelfde elementen
o Voorbeeld: A = { a , e ,i , k , s , t } en B{ x |x is een letter uit het woord ' statistiek ' }
o Notatie: A = B
 Deelverzameling
o Indien verzameling A slechts een deel van de elementen uit verzameling B bevat, is A een
deelverzameling van B
o Notatie: A⊂B
o Voorbeeld:
M = { x |x is een student die Statistiek volgt aan een bepaalde universiteit } en
N = { x| x is een student die Communicatiew . volgt aan diezelfde universiteit }

Unie en doorsnede van twee verzamelingen
 Doorsnede = de verzameling die bestaat uit elementen die zowel in verzameling A als B zitten
o Notatie: A∩B
o Voorbeeld: A= { a , b , c , d , e } en B = { a , e ,i , k , s , t }, dan A∩B = { a , e }
o Voorbeeld: A = { 1,2 } en B = { oneven }, dan A∩ B = { 1 }
o Disjuncte2 verzameling / disjuncte gebeurtenis:
 doorsnede A∩ B=ϕ (lege doorsnede)
 gebeurtenissen die geen gemeenschappelijke uitkomsten bevatten
 Voorbeeld: A = { 1 } enB = { 2,4,6 }


 Unie = de verzameling die bestaat uit elementen die ofwel in verzameling A, ofwel in B, ofwel in
beide verzamelingen zitten
o Notatie: A∪B
o Voorbeeld: A = { a , b , c , d , e } en B = { a , e ,i , k , s , t }, dan A∪ B =
{ a , b , c , d , e ,i , k , s , t }
o Voorbeeld: A = { 1,2 } en B = { oneven }, dan A∪ B = { 1,2,3,5 }


DOORSNEDE UNIE DISJUNCT
A∩B A∪B A∩B = ∅




2
Synoniem: mutueel exclusief


2

,Statistiek I – semester 2 “van lot naar kans”




Het verschil van 2 verzamelingen
Verschil = de verzameling die bestaat uit alle elementen van verzameling A die niet in B zitten
o Notatie: A∖ B
o Voorbeeld: A = { a , b , c , d , e } en B = { a , e ,i , k , s , t }, dan A∖ B = { b , c , d }

Machtsverzameling M(S)
Machtsverzameling = een verzameling die als elementen opnieuw verzamelingen heeft.
Voorbeeld: de machtsverzameling van S = { 1,2,3 } is gelijk aan
M(S) = { ∅ , {1 } , { 2 } } , {3 } , { 1,2 }, { 1,3 } , { 2,3 } , {1,2,3 } }

Indien verzameling S in totaal n verschillende elementen bevat, is het mogelijk om 2n deelverzamelingen
te maken:
Als #S = n dan #M(S) = 2n


Voorbeeld: de M(S) van de uitkomstenruimte S = { 1,2,3,4,5,6 } , die hoort bij het stochastisch proces
‘opgooien van een eerlijke dobbelsteen en registreren van het aantal ogen’, bevat dus 26 elementen (=64).
Er zijn m.a.w. 64 mogelijke elementaire of samengestelde toevalsgebeurens die verbonden kunnen
worden met het stochastisch proces: M(S)={Ø,{1},{2},{3},{4},{5},{6},{1,2},{1,3},... {1,2,3},{1,2,4},...,
{1,2,3,4,5,6}}

3 DE KANSDEFINITIE
Kans P
 = een functie die elk toevalsgebeuren A met een welbepaald getal P(A) verbindt, waarbij P(A) een
kwantitatieve weergave is van de mogelijkheid dat het gebeuren A plaatsvindt.

 (m.a.w. de kans P(A) is een wiskundige functie die de elementen uit een bepaald domein (de
uitkomsten uit de uitkomstenruimte) afbeeldt op een reëel getal (het beeld = de kans op
voorkomen), volgens een bepaald functievoorschrift of een kansdefinitie)

 P = functie die met elke G uit M(S) een reëel getal P(G) tussen 0 en 1 associeert (definitie ppt)




3

, Statistiek I – semester 2 “van lot naar kans”




Soorten kansdefinities
 Subjectieve kansdefinitie (gokkans)
o vb. ‘kans om lotto te winnen is erg klein’
o vaak gebaseerd op ervaring, vaag

 Empirische kansdefinitie (zweetkans) -> inductief
o vb. kans om 2 te gooien bij een eerlijke dobbelsteen
o dobbelsteen heel vaak opwerpen (n  oneindig)3
f
o geregeld ( i ) berekenen (= benadering voor kans)
n
f
o kijken waar de waarden ( i ) naartoe gaan als n toeneemt (de ‘limietwaarde’ is de
n
gezochte kans)
fi
o P(A) = lim
n→∞ n




 Theoretische kansdefinitie / kansdefinitie van Laplace (weetkans) -> deductief
o Belangrijk: Laplace veronderstelt dat elke uitkomst even plausibel is, elk elementair
toevalsgebeuren wordt dus verbonden met eenzelfde kans, alle uitkomsten zijn even
waarschijnlijk  = uniforme kansverdeling
vb. toepassen bij eerlijke dobbelsteen
o Aantal gunstige uitkomsten (successen) delen door aantal mogelijke uitkomsten
3
De steekproefgrootte n moet zeer groot zijn vooraleer men de empirische kansdefinitie kan toepassen.


4

Dit zijn jouw voordelen als je samenvattingen koopt bij Stuvia:

Bewezen kwaliteit door reviews

Bewezen kwaliteit door reviews

Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!

In een paar klikken geregeld

In een paar klikken geregeld

Geen gedoe — betaal gewoon eenmalig met iDeal, Bancontact of creditcard en je bent klaar. Geen abonnement nodig.

Focus op de essentie

Focus op de essentie

Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper xenabeyers. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €3,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 68175 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€3,99  2x  verkocht
  • (0)
In winkelwagen
Toegevoegd