An Algorithm: A sequence of steps designed to process data and generate insights
or predictions. It automates tasks like data analysis, classification, and pattern
recognition.
CRISP-DM (Cross Industry Standard Process for Data Mining): A structured
process for solving data mining problems, consisting of iterative steps from business
understanding to deployment.
Pre-processing: Steps taken to clean, transform, and prepare data for analysis,
including handling missing values, encoding categorical data, and treating outliers.
Data Science: A set of fundamental principles that guide the extraction of
knowledge from data.
Data Mining: The extraction of knowledge from data, using technologies that
incorporate the principles of data science.
Big Data: Data that is so large and complex that traditional data storage and
processing systems are inadequate.
Machine Learning (ML): A subset of AI techniques that allow systems to learn
and improve from experience without being explicitly programmed.
Deep Learning (DL): A subset of machine learning that uses neural networks with
many layers to analyse various factors of data.
Artificial Intelligence (AI): Techniques that allow machines to display intelligent
behaviour.
Supervised Learning: A type of machine learning where the model is trained on
labelled data, i.e., data that includes both input and the desired output.
Unsupervised Learning: A type of machine learning where the model is trained on
data without labelled responses and must find patterns and relationships in the data.
Reinforcement Learning: A type of machine learning where an agent learns to
make decisions by performing certain actions and receiving rewards or penalties.
Data as a Strategic Asset: The concept that data can lead to better decision-
making and is a valuable asset for businesses.
, Model: An abstract representation of reality in data science, often created through
machine learning algorithms based on data.
Training Data: Data used to train a machine learning model.
Testing Data: Data used to evaluate the performance of a trained machine
learning model.
Classification: A type of supervised learning where the output is a discrete
category, such as 'spam' or 'not spam'.
Regression: A type of supervised learning where the output is a continuous value,
such as predicting house prices.
Clustering: An unsupervised learning task that involves grouping similar data points
together.
Anomaly Detection: Identifying data points that do not fit the normal pattern of
the data.
Querying and Reporting: Techniques used to retrieve specific information from
databases, such as SQL queries.
OLAP (Online Analytical Processing): Tools used to analyse data from multiple
database systems at once, often used in business intelligence.
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
√ Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper jefdecuyper. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €2,49. Je zit daarna nergens aan vast.