[10 marks] 1. Consider a 10-year bond that pays a semi-annual coupon of 3% on a face value of $1,000.
Note that the price function for this bond is P (y) = 1000[1 + (.015 y)a20,y ].
(a) Sketch the bond’s price as a function of its yield. That is, sketch the graph of P (y). Be
sure to label any important points and/or asymptotes.
Graph must be (i) decreasing, (ii) convex, (iii) pass through the point (.015, 1000), (iv)
have vertical intercept at P = 1300 and (v) have horizontal asymptote at P = 0 as
y ! 1.
(b) The bond is currently trading at $844.11. Is its yield higher or lower than 7% compounded
semi-annually? Explain your answer.
Lower. Price at 7% c.s.a. is P (.035) = 715.15, which is less than the observed price.
Because of the inverse relationship between price and yield, a higher price requires a lower
yield.
(c) Suppose I purchase the bond now, at a yield of 3% compounded semi-annually, and sell
it immediately after I receive the next coupon in six months. If the bond’s yield at that
time is 3.4% compounded semi-annually, then what is my total return?
Total return is
P1 + C P0
,
P0
where P0 = price at which bond was purchased, C = the dollar value of the coupon
received and P1 = price at which bond was sold. Bond was purchased for P0 = 1000[1 +
(.015 .015)a20,.015 ] = 1000 and sold for P1 = 1000[1 + (.015 .017)a19,.017 ] = 967.76.
Coupon was C = (.03/2)1000 = 15. Total return is therefore 967.76+15
1000
1000
= 0.01724,
or 3.448% on an annualized basis.
[6 marks] 2. The Government of Ontario has an outstanding bond that matures in exactly 3 years and
pays a semi-annual coupon of 4% on a face value of $1,000. The current market price of the
bond is $945.83.
(a) Using an initial guess of 9% compounded semi-annually, use one iteration of Newton’s
method to approximate the bond’s yield. Please express your answer as an annual
rate with semi-annual compounding. You may use the fact that P (.045) = 871.05 and
P 0 (.045) = 4, 741.82 for this bond.
Update formula is
B P (y0 ) 945.82 871.05
y1 = y0 + = .045 + = .045 .01576 . . . = 0.029230 . . . .
P 0 (y
0) 4741.82
So the bond’s yield is approximately 5.8% compounded semi-annually.
(b) What happens to the interval (4%, 9%) after one iteration of the bisection method? You
may use the fact that P (.0325) = 932.84.
Interval becomes (4%, 6.5%). Prices at endpoints are P (.02) = 1000 and P (.045) =
871.05. Midpoint is 6.5% c.s.a. and price at midpoint is P (.0325) = 932.84. So yields
in (4%, 6.5%) go with prices in (932.84, 1000), while yields in (6.5%, 9%) go with prices
in (871.05, 932.84). Since the observed price lies in (932.84, 1000) its yield must lie in
(4%, 6.5%).
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper dg22. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €10,24. Je zit daarna nergens aan vast.