100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Extended Summary: Data Analytics for Business Intelligence (1BM110)

Beoordeling
-
Verkocht
-
Pagina's
50
Geüpload op
27-10-2024
Geschreven in
2022/2023

This is an extended summary of all lectures for the course Data Analytics for Business Intelligence (1BM110). This 50-page document (with a clickable table of contents for easier navigation) summarizes the essence of all topics covered in the course (as far as I could imagine when writing it). It includes as many images & visualizations as possible to clarify the concepts as much as possible, and make them easy to understand.

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
27 oktober 2024
Aantal pagina's
50
Geschreven in
2022/2023
Type
Samenvatting

Voorbeeld van de inhoud

1BM110 - course summary




Table of contents
Lecture 1: introduction
Big data
Business decisions
Business analytics
Data mining
Cross Industry Standard Process for Data Mining (CRISP-DM) framework
Lecture 1: data visualization & preprocessing
Data understanding
Categorical data
Numerical data
Non-numerical data
Misleading visualizations
Data preparation
Data integration
Data cleaning
Data reduction
Data transformation
Lecture 2: supervised learning 1
Introduction to supervised learning
Classification models
K-nearest-neighbour classifier (KNN)
Naïve Bayes classifier
Decision trees
Classification performance measurement
Binary classification
Receiver Operating Characteristic (ROC) curve
Kappa coefficient
Regression models
Linear regression
Regression vs classification
Experimental setup
Lecture 3: supervised learning 2
Support Vector Machines (SVMs)
Non-linear SVMs
Bias-variance trade-off




1BM110 - course summary 1

, Ensemble methods
Bagging
Boosting
Unsupervised learning (clustering)
Clustering
K-means clustering
Hierarchical clustering
Applying clustering algorithms
Lecture 4: temporal data
Grouping sequences & mapping
Mapping methods
Dynamic Time Warping (DTW)
Response features
Markov chains
Maximum likelihood estimation
Association analysis
Lecture 5: neural networks & Deep Learning (DL)
Perceptron & sigmoid neuron
Multi-layer perceptron (multi-layer neural network)
Training neural networks
Gradient descent
Momentum
Regularization
Lectures 6 & 7: Natural Language processing (NLP)
Domain & corpus
Corpus
Pre-processing
Linguistic processing
Knowledge resources
Text representation
Bag-of-Words (BoW) model
n-grams
Linguistic features model vs BoW model
Distributional Semantic Models (DSM)
Supervised NLP tasks
Unsupervised NLP tasks
Lecture 8: eXplainable Artificial Intelligence (XAI)
Interpretability vs explanations
Transparency
White boxes (intrinsically interpretable models)
Model-agnostic explanation methods
Model-specific explanation methods (for DNN)
Evaluation & measures




Lecture 1: introduction
Big data
Volume: quantity of generated and stored data

Variety: type and nature of the data




1BM110 - course summary 2

, Velocity: speed at which the data is generated
and processed




Business decisions
Decision Support System (DSS): computerized program used to support determinations, judgments,
and courses of action in an organization or a business.




Convential decision support: emphasis on deduction.


Business Intelligence (BI): data-driven DSS; methods that facilitate decision-making by integrating
information and processes through tools that transform data into useful and actionable information.




Business intelligence: emphasis on induction.


Business analytics
Descriptive analytics: using data to understand past and current business performance.

Answers questions such as:

What has occurred?

How much did we sell in each region?

What type of customer returns products?

Techniques & methods: reporting, dashboards, summarization, visualization

Segmentation: clustering, associate rules

Predictive analytics: analyzes past performance in an effort to predict the future.

Answers questions such as:

What will occur?

How much will we sell in each region?

Techniques & methods:

Regression & classification




1BM110 - course summary 3

, Text mining

Prescriptive analytics: identifies the best alternatives to minimize or maximize some objective.

Answers questions such as:

What should occur?

How much should we produce to maximize profit?

Techniques & methods: mathematical optimization models, heuristics


Data mining
Data mining: identifying patterns in data.




Examples of data mining.


Real-world data mining:

Too much data → data might be polluted

Unclear which data attributes are important

Results do not make sense

Cross Industry Standard Process for Data Mining (CRISP-DM) framework
Steps in the CRISP-DM framework:

1. Business understanding

2. Data understanding

3. Data preparation

4. Modeling

5. Evaluation

6. Deployment




The CRISP-DM framework.




1BM110 - course summary 4
€7,94
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
im2123

Maak kennis met de verkoper

Seller avatar
im2123 Technische Universiteit Eindhoven
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
3
Lid sinds
1 jaar
Aantal volgers
0
Documenten
14
Laatst verkocht
2 maanden geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen