100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Engineering_Electromagnetics___7th_Edition___William_H._Hayt___Solution_Manua £12.52   Add to cart

Exam (elaborations)

Engineering_Electromagnetics___7th_Edition___William_H._Hayt___Solution_Manua

 2 views  0 purchase
  • Module
  • Institution

1.1. Given the vectors M = −10ax + 4ay − 8az and N = 8ax + 7ay − 2az, find: a) a unit vector in the direction of −M + 2N. −M + 2N = 10ax − 4ay + 8az + 16ax + 14ay − 4az = (26, 10, 4) Thus a = (26, 10, 4) |(26, 10, 4)| = (0.92, 0.36, 0.14) b) the magnitude of 5ax + N − 3M: (5...

[Show more]

Preview 4 out of 250  pages

  • March 9, 2022
  • 250
  • 2021/2022
  • Exam (elaborations)
  • Questions & answers
avatar-seller
Your text here 1 SOLUTION MANUAL ENGINEERING ELECTROMAGNETICS 7TH EDITION BY WILLIAM
H. HAYT WITH COMPLETE CHAPTERS



CHAPTER 1

1.1. Given the vectors M = −10ax + 4ay − 8az and N = 8ax + 7ay − 2az , find:
a) a unit vector in the direction of −M + 2N.
−M + 2N = 10ax − 4ay + 8az + 16ax + 14ay − 4az = (26, 10, 4)
Thus
(26, 10, 4)
a= = (0.92, 0.36, 0.14)
|(26, 10, 4)|

b) the magnitude of 5ax + N − 3M:
(5, 0, 0) + (8, 7, −2) − (−30, 12, −24) = (43, −5, 22), and |(43, −5, 22)| = 48.6.
c) |M||2N|(M + N):
|(−10, 4, −8)||(16, 14, −4)|(−2, 11, −10) = (13.4)(21.6)(−2, 11, −10)
= (−580.5, 3193, −2902)

1.2. The three vertices of a triangle are located at A(−1, 2, 5), B(−4, −2, −3), and C(1, 3, −2).
a) Find the length of the perimeter of the triangle: Begin with AB = (−3, −4, −8),√ BC = (5, 5, 1),
and
√ CA = (−2, −1,
√ 7). Then the perimeter will be  = |AB| + |BC| + |CA| = 9 + 16 + 64 +
25 + 25 + 1 + 4 + 1 + 49 = 23.9.
b) Find a unit vector that is directed from the midpoint of the side AB to the midpoint of side
BC: The vector from the origin to the midpoint of AB is MAB = 12 (A + B) = 12 (−5ax + 2az ).
The vector from the origin to the midpoint of BC is MBC = 12 (B + C) = 12 (−3ax + ay − 5az ).
The vector from midpoint to midpoint is now MAB − MBC = 12 (−2ax − ay + 7az ). The unit
vector is therefore

MAB − MBC (−2ax − ay + 7az )
aM M = = = −0.27ax − 0.14ay + 0.95az
|MAB − MBC | 7.35

where factors of 1/2 have cancelled.
c) Show that this unit vector multiplied by a scalar is equal to the vector from A to C and that the
unit vector is therefore parallel to AC. First we find AC = 2ax + ay − 7az , which we recognize
as −7.35 aM M . The vectors are thus parallel (but oppositely-directed).

1.3. The vector from the origin to the point A is given as (6, −2, −4), and the unit vector directed from
the origin toward point B is (2, −2, 1)/3. If points A and B are ten units apart, find the coordinates
of point B.
With A = (6, −2, −4) and B = 13 B(2, −2, 1), we use the fact that |B − A| = 10, or
|(6 − 23 B)ax − (2 − 23 B)ay − (4 + 13 B)az | = 10
Expanding, obtain
36 − 8B + 49 B 2 + 4 − 83 B + 49 B 2 + 16 + 83 B + 19 B 2 = 100

or B 2 − 8B − 44 = 0. Thus B = 8± 64−176
2 = 11.75 (taking positive option) and so

2 2 1
B= (11.75)ax − (11.75)ay + (11.75)az = 7.83ax − 7.83ay + 3.92az
3 3 3
1

,1.4. A circle, centered at the origin with a radius of 2 units, lies in the xy plane. Determine
√ the unit
vector in rectangular components that lies in the xy plane, is tangent to the circle at ( 3, 1, 0), and
is in the general direction of increasing values of y:
A unit vector tangent to this circle in the general increasing y direction is t = √
aφ . Its x and y
components are tx = aφ · ax = − sin φ, and ty = √ aφ · ay = cos φ. At the point ( 3, 1), φ = 30◦ ,
and so t = − sin 30◦ ax + cos 30◦ ay = 0.5(−ax + 3ay ).

1.5. A vector field is specified as G = 24xyax + 12(x2 + 2)ay + 18z 2 az . Given two points, P (1, 2, −1)
and Q(−2, 1, 3), find:
a) G at P : G(1, 2, −1) = (48, 36, 18)
b) a unit vector in the direction of G at Q: G(−2, 1, 3) = (−48, 72, 162), so

(−48, 72, 162)
aG = = (−0.26, 0.39, 0.88)
|(−48, 72, 162)|

c) a unit vector directed from Q toward P :

P−Q (3, −1, 4)
aQP = = √ = (0.59, 0.20, −0.78)
|P − Q| 26

d) the equation of the surface on which |G| = 60: We write 60 = |(24xy, 12(x2 + 2), 18z 2 )|, or
10 = |(4xy, 2x2 + 4, 3z 2 )|, so the equation is

100 = 16x2 y 2 + 4x4 + 16x2 + 16 + 9z 4


1.6. If a is a unit vector in a given direction, B is a scalar constant, and r = xax + yay + zaz , describe
the surface r · a = B. What is the relation between the the unit vector a and the scalar B to this
surface? (HINT: Consider first a simple example with a = ax and B = 1, and then consider any a
and B.):
We could consider a general unit vector, a = A1 ax + A2 ay + A3 az , where A21 + A22 + A23 = 1.
Then r · a = A1 x + A2 y + A3 z = f (x, y, z) = B. This is the equation of a planar surface, where
f = B. The relation of a to the surface becomes clear in the special case in which a = ax . We
obtain r · a = f (x) = x = B, where it is evident that a is a unit normal vector to the surface
(as a look ahead (Chapter 4), note that taking the gradient of f gives a).

1.7. Given the vector field E = 4zy 2 cos 2xax + 2zy sin 2xay + y 2 sin 2xaz for the region |x|, |y|, and |z|
less than 2, find:
a) the surfaces on which Ey = 0. With Ey = 2zy sin 2x = 0, the surfaces are 1) the plane z = 0,
with |x| < 2, |y| < 2; 2) the plane y = 0, with |x| < 2, |z| < 2; 3) the plane x = 0, with |y| < 2,
|z| < 2; 4) the plane x = π/2, with |y| < 2, |z| < 2.
b) the region in which Ey = Ez : This occurs when 2zy sin 2x = y 2 sin 2x, or on the plane 2z = y,
with |x| < 2, |y| < 2, |z| < 1.
c) the region in which E = 0: We would have Ex = Ey = Ez = 0, or zy 2 cos 2x = zy sin 2x =
y 2 sin 2x = 0. This condition is met on the plane y = 0, with |x| < 2, |z| < 2.



2

, 1.8. Demonstrate the ambiguity that results when the cross product is used to find the angle between
two vectors by finding the angle between A = 3ax − 2ay + 4az and B = 2ax + ay − 2az . Does this
ambiguity exist when the dot product is used?
We use the relation A × B = |A||B| sin θn. With the given vectors we find
 
√ 2ay + az √ √
A × B = 14ay + 7az = 7 5 √ = 9 + 4 + 16 4 + 1 + 4 sin θ n
5
  
±n


where n is identified as shown; we see that n can be positive or negative, as sin θ can be
positive or negative. This apparent sign ambiguity is not the real problem, however, as we
really want
√ the√ magnitude
√ of the angle anyway. Choosing the positive sign, we are left with
sin θ = 7 5/( 29 9) = 0.969. Two values of θ (75.7◦ and 104.3◦ ) satisfy this equation, and
hence the real ambiguity.

In using the dot
√ product, we find A · B = 6 − 2 − 8 = −4 = |A||B| cos θ = 3 29 cos θ, or
cos θ = −4/(3 29) = −0.248 ⇒ θ = −75.7◦ . Again, the minus sign is not important, as we
care only about the angle magnitude. The main point is that only one θ value results when
using the dot product, so no ambiguity.

1.9. A field is given as
25
G= (xax + yay )
(x2 + y2 )
Find:
a) a unit vector in the direction of G at P (3, 4, −2): Have Gp = 25/(9 + 16) × (3, 4, 0) = 3ax + 4ay ,
and |Gp | = 5. Thus aG = (0.6, 0.8, 0).
b) the angle between G and ax at P : The angle is found through aG · ax = cos θ. So cos θ =
(0.6, 0.8, 0) · (1, 0, 0) = 0.6. Thus θ = 53◦ .
c) the value of the following double integral on the plane y = 7:
 4  2
G · ay dzdx
0 0

 4  2  4 2  4
25 25 350
2 2
(xax + yay ) · ay dzdx = 2
× 7 dzdx = 2
dx
0 0 x +y 0 0 x + 49 0 x + 49
  
1 −1 4
= 350 × tan − 0 = 26
7 7


1.10. By expressing diagonals as vectors and using the definition of the dot product, find the smaller angle
between any two diagonals of a cube, where each diagonal connects diametrically opposite corners,
and passes through the center of the cube:
Assuming a side length, b, two diagonal vectors would be A = √ b(ax +
√ ay + az ) and B =
b(ax − ay + az ). Now use A · B = |A||B| cos θ, or b (1 − 1 + 1) = ( 3b)( 3b) cos θ ⇒ cos θ =
2

1/3 ⇒ θ = 70.53◦ . This result (in magnitude) is the same for any two diagonal vectors.




3

, 1.11. Given the points M (0.1, −0.2, −0.1), N (−0.2, 0.1, 0.3), and P (0.4, 0, 0.1), find:
a) the vector RM N : RM N = (−0.2, 0.1, 0.3) − (0.1, −0.2, −0.1) = (−0.3, 0.3, 0.4).
b) the dot product RM N · RM P : RM P = (0.4, 0, 0.1) − (0.1, −0.2, −0.1) = (0.3, 0.2, 0.2). RM N ·
RM P = (−0.3, 0.3, 0.4) · (0.3, 0.2, 0.2) = −0.09 + 0.06 + 0.08 = 0.05.
c) the scalar projection of RM N on RM P :

(0.3, 0.2, 0.2) 0.05
RM N · aRM P = (−0.3, 0.3, 0.4) · √ =√ = 0.12
0.09 + 0.04 + 0.04 0.17

d) the angle between RM N and RM P :
 
−1 RM N · RM P −1 0.05
θM = cos = cos √ √ = 78◦
|RM N ||RM P | 0.34 0.17


1.12. Show that the vector fields A = ρ cos φ aρ + ρ sin φ aφ + ρ az and B = ρ cos φ aρ + ρ sin φ aφ − ρ az
are everywhere perpendicular to each other:
We find A · B = ρ2 (sin2 φ + cos2 φ) − ρ2 = 0 = |A||B| cos θ. Therefore cos θ = 0 or θ = 90◦ .

1.13. a) Find the vector component of F = (10, −6, 5) that is parallel to G = (0.1, 0.2, 0.3):

F·G (10, −6, 5) · (0.1, 0.2, 0.3)
F||G = G= (0.1, 0.2, 0.3) = (0.93, 1.86, 2.79)
|G|2 0.01 + 0.04 + 0.09

b) Find the vector component of F that is perpendicular to G:

FpG = F − F||G = (10, −6, 5) − (0.93, 1.86, 2.79) = (9.07, −7.86, 2.21)

c) Find the vector component of G that is perpendicular to F:

G·F 1.3
GpF = G − G||F = G − F = (0.1, 0.2, 0.3) − (10, −6, 5) = (0.02, 0.25, 0.26)
|F|2 100 + 36 + 25


1.14. Show that the vector fields A = ar (sin 2θ)/r2 +2aθ (sin θ)/r2 and B = r cos θ ar +r aθ are everywhere
parallel to each other:
Using the definition of the cross product, we find

sin 2θ 2 sin θ cos θ
A×B= − aφ = 0 = |A||B| sin θ n
r r

Identify n = aφ , and so sin θ = 0, and therefore θ = 0 (they’re parallel).




4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller EvaTee. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for £12.52. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

78637 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy revision notes and other study material for 14 years now

Start selling
£12.52
  • (0)
  Add to cart