100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
 Edexcel AS Level 2022 PAPER 1: Pure Mathematics £4.91   Add to cart

Exam (elaborations)

 Edexcel AS Level 2022 PAPER 1: Pure Mathematics

 6 views  0 purchase

 Edexcel AS Level 2022 PAPER 1: Pure Mathematics

Preview 4 out of 48  pages

  • June 23, 2023
  • 48
  • 2022/2023
  • Exam (elaborations)
  • Only questions
All documents for this subject (12)
avatar-seller
academe
Please check the examination details below before entering your candidate information
Candidate surname Other names


Centre Number Candidate Number




Pearson Edexcel Level 3 GCE
Paper
Time 2 hours
reference 8MA0/01
 
Mathematics
Advanced Subsidiary
PAPER 1: Pure Mathematics

You must have: Total Marks
Mathematical Formulae and Statistical Tables (Green), calculator


Candidates may use any calculator allowed by Pearson regulations.
Calculators must not have the facility for symbolic algebra manipulation,
differentiation and integration, or have retrievable mathematical formulae
stored in them.
Instructions
•• IfUsepencil
black ink or ball-point pen.
is used for diagrams/sketches/graphs it must be dark (HB or B).
• centre number
Fill in the boxes at the top of this page with your name,
and candidate number.
• clearly labelled. and ensure that your answers to parts of questions are
Answer all questions

• Answer the questions in the spaces provided
– there may be more space than you need.
• You should show sufficient working to make your methods clear.
Answers without working may not gain full credit.
• Inexact
stated.
answers should be given to three significant figures unless otherwise

Information
•• AThere
booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
are 14 questions in this question paper. The total mark for this paper is 100.
• – use this asfora guide
The marks each question are shown in brackets
as to how much time to spend on each question.
Advice
•• Read each question carefully before you start to answer it.
Try to answer every question.
• Check your answers if you have time at the end. Turn over



*P69201A0148*
P69201A
©2022 Pearson Education Ltd.

Q:1/1/1/1/

,1. Find



 3 3 
 8 x − + 5 d x

2 x

giving your answer in simplest form.
(4)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________

2
*P69201A0248* 

,Question 1 continued
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________

(Total for Question 1 is 4 marks)



*P69201A0348*
3
 Turn over

, 2. f (x) = 2x 3 + 5x 2 + 2x + 15
(a) Use the factor theorem to show that (x + 3) is a factor of f(x).
(2)
(b) Find the constants a, b and c such that

f (x) = (x + 3)(ax 2 + bx + c)
(2)
(c) Hence show that f (x) = 0 has only one real root.
(2)
(d) Write down the real root of the equation f (x – 5) = 0
(1)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________


4
*P69201A0448* 

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller academe. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for £4.91. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67474 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy revision notes and other study material for 14 years now

Start selling
£4.91
  • (0)
  Add to cart