100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Introductory Mammalian Physiology (PHOL0002) Notes - Cellular Physiology and Skeletal Muscle £6.49
Add to cart

Lecture notes

Introductory Mammalian Physiology (PHOL0002) Notes - Cellular Physiology and Skeletal Muscle

 6 views  0 purchase

Explore Introductory Mammalian Physiology with these specialized notes tailored for Year 1 students at University College London. Immerse yourself in the intricacies of cellular physiology and skeletal muscle, delving into the core principles that govern cellular function and the dynamic workings o...

[Show more]

Preview 3 out of 21  pages

  • November 30, 2023
  • 21
  • 2020/2021
  • Lecture notes
  • Dr amanda cain
  • All classes
All documents for this subject (6)
avatar-seller
sujansathiendran
Skeletal Muscle
Skeletal Muscle
 Types of muscle
o Skeletal muscle
 Striated muscle – due to regular array of contractile elements (actin + myosin = sarcomere)
 Activated via action potentials in motor nerves = neurogenic contractions
o Cardiac muscle
 Striated muscle
 Have intrinsic rhythm that is modulated by action potentials in autonomic nerves =
myogenic contractions
o Smooth muscle
 Elongated muscle – no regular array of actin + myosin = no striations
 Myogenic contractions
 Excitation-contraction
o How a skeletal muscle contraction is initiated
 Nerve action potential
 ACh secretion by nerve ending
 End-plate potential
 Muscle action potential
 Depolarise T-tubules (transverse) and open Ca2+ channels of SR
 T-tubules = plasma membrane that protrudes into skeletal muscle cells
 SR = where cells store Ca2+
 Sarcoplasmic Ca2+ concentration increases
 Contraction
 Pump Ca2+ into SR
 Relaxation
 Innervation
o Skeletal muscles are supplied by myelinated nerve fibres which have their origin in the CNS = motor
nerves
 Motor nerve enters muscle fibre = branches – making synaptic contact with many muscle
fibres
o Motor unit
 Motor neuron + all the muscle fibres it innervates
 Skeletal muscle structure
o Single skeletal muscle contains many muscle fibres
 Different components of skeletal muscle –
surrounded by layers of connective tissue
 Layers
o Endomysium
 A delicate layer of
connective tissue that
surrounds each muscle
fibre
o Perimysium
 Connective tissue that surrounds each fascicle
 Fascicle = groups of muscle fibre bundles
o Epimysium
 Connective tissue that surrounds entire muscle
 Muscle membranes
o Myofilaments surrounded by sarcoplasmic reticulum
 Arrangement of sarcoplasmic reticulum and T-tubules with myofibrils

,Skeletal Muscle
 Filaments
o Thick filaments
 Made up of myosin molecules = myosin head + myosin tail
 Head = contact point between thick and thin filament
o Thin filament
 Actin
 Sits on tropomyosin backbone
o Tropomyosin activated by troponin (calcium binding protein)
 Calcium binds to troponin = causes 3D shift in protein – exposing
myosin binding sites on actin
o As muscles contract – certain elements can still be identified
 Molecules slide against one another
 Sarcomere – one functional unit of a muscle fibre = segment between two neighbouring z-lines
o Proteins
 Actin filaments = thin filaments
 Major component of the I-band + extends
throughout the A-band
 Myosin filaments = thick filaments
 Extend throughout the A-band
 Cross linked at the centre by the M-band
o Bands
 Z-lines
 Act as an anchoring point of the actin filaments
 I-band
 Zone of actin filaments that is not superimposed by myosin filaments
 A-band
 Contains the entire length of single thick filament
 Contains both actin and myosin filaments
 H-zone
 Zone of myosin filaments without actin
 M-line
 Disc in the middle of the sarcomere – formed from cross-connecting elements of the
cytoskeleton
 Contraction cycle
o Myosin heads hydrolyse ATP and become reoriented and energised
o Myosin heads bind to actin = forming crossbridges
o Myosin crossbridges rotate toward centre of sarcomere = power stroke
 ADP dissociates
o As myosin heads bind ATP – crossbridges detach from actin
o Contraction cycle continues if ATP is available and Ca 2+ level in sarcoplasm is high
 Contractile response
o Contractile response – initiated after the muscle action potential + lasts longer than the action
potential




o
 Stimulation frequency

, Skeletal Muscle
o Twitch = individual action potentials resulting in a single contraction
 Different frequencies of stimulation affects contractile force
o Summation
 Series of few action potentials sent after one another
 Does not allow cell to return to initial level = resulting in larger contractile force
o Unfused tetanus
 Multiple action potentials sent after one another without allowing cell to return ot initial
level – resulting in larger contractile force
o Tetanus
 Increased frequency of action potential – resulting in smooth contrinuous muscle
contraction




o
 Contraction
o As sarcomere length decreases below 2 micrometre – the
thin filaments collide in the middle of the sarcomere =
actin myosin interaction is disturbed = contractile force
decreases
o As muscle length is decreased towards optimum length –
the amount of overlap increases = contractile force
increase
o At long sarcomere length – actin filaments do not overlap
with myosin filaments = no contraction
 Length-tension relationship
o Muscles contract = generate force – measured as tension or stress + changes in length
 Isotonic contractions
 Concentric contraction
o Muscle activation that increases the tension on a muscle as it shortens
 Eccentric contraction
o Muscle activation that increases tension on a muscle as it lengthens
 Isometric contraction
 Muscle contraction without any joint movement
 No lengthening or contraction of muscles
 Type of skeletal muscle
o Fast and slow muscles
 Fast muscles – type II
 Contract and relax quickly after a single action potential
 Tire quickly
 Slow muscles – type I
 Contract and relax slowly after a single action potential
 Tire slowly

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller sujansathiendran. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for £6.49. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

48072 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy revision notes and other study material for 15 years now

Start selling
£6.49
  • (0)
Add to cart
Added