100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Vector Algebra Questions and Answers £12.67   Add to cart

Exam (elaborations)

Vector Algebra Questions and Answers

 2 views  0 purchase

Vector Algebra Questions and Answers pt1

Preview 4 out of 36  pages

  • April 6, 2024
  • 36
  • 2023/2024
  • Exam (elaborations)
  • Questions & answers
  • vector algebra
All documents for this subject (7)
avatar-seller
UpperCrust
VECTOR ALGEBRA JEE ADVANCED


VECTOR ALGEBRA
WORKEDOUT EXAMPLES 2 1 1
  1,   ;    ,  
3 3 3
W.E-1:Let PN be the Perpendicular from the point
W.E-3:If a and b are unit vectors then greatest and
P 1, 2,3 to xy-plane. If OP makes an angle 
with positive direction of the Z-axis and ON least values of a  b  a  b are
makes an angle  with the positive direction of A. 2,-2 B. 4, 4 2
x-axis, where O is the Origin (  and  are
C. 2 2, 2 D. 2 2, 2 2
acute angles) then
Sol: (C)
2 1
A. sin  sin   B. Cos cos   Given a  b  1
14 14

C. tan  
5
D. tan   2
 
Let a, b   then
3 2 2 2
Sol: (A, C, D) a  b  a  b  2a.b
Let OP  r then = 2  2 cos 
r sin  cos   1......(1) 2
= 4 cos
r sin  sin   2......(2) 2
r cos   3......(3) 
 a  b  2 cos
On squaring and adding, we get 2
2
r  14  r   14 
Using (1),(2),(3) and (4) we get required result. Similarly, a  b  2sin
2
W.E-2:In a four-Dimensional space where unit vector
  
along axes are i, j , k and l and a1 , a 2 , a 3 , a 4  a  b  a  b  2  cos  sin 
 2 2
are four non-zero vectors such that no vector
can be expressed as linear combination of others 0 
Clearly   0,180     0,900 
and 2
  1  a1 a2   a2 a3  r a3 a4 2a2  a3 a4  o  greatest value= 2 2 , least value= 2(1)  2
Then W.E-4:Let ABCD be a tetrahedron with AB=41,
BC=36, CA=7, DA=18, DB=27, DC=13. If
A.   1 B.    ‘d’ is the distance between the midpoints of edges
C. r  D.   1/ 3 AB and CD, then
Sol: (A, B) A. The last digit of d 2 is 7
 1  a1 a2  a2 a3 r a3 a4 2a2 a3 a4 o B. d 2  137
C. The last digit of d 2 is 6
 1 a1 12 a2   1 a3   a4 0
D. d 2  126
a1 , a 2 , a 3 , a 4 are linearly independent Sol: (A, B)
   1  0 .............(1) Take D as the origin DA  a , DB  b , DC  c
1      2  0.......(2)
a 18, b 27, c 13, a b 41, b c 36, c a 7
    1  0.....(3)
2
    0....(4) 2 a b c 
By solving (1), (2), (3) and (4), we get d   
 2 2

MATHS BY Er.ROHIT SIR 119

, JEE ADVANCED VECTOR ALGEBRA
2 2 2 2
 4d 2  a  b  c  2a .b  2a .c  2b .c Now, b  c  144
2 2 2 2 2
a  b  a  b  2a .b  b  c  2b.c  144
2 2 2
b  c  b  c  2b .c  b.c  72
2 2 2 1 b
c  a  c  a  2c .a Since AE : EB  1: 3  AE  AB 
4 4
using the above results we get d 2  137
b
W.E-5:Let aˆ , bˆ, cˆ be unit vectors such that CE  AE  AC   c
4
aˆ  bˆ  cˆ  0 and x, y, z be distinct integers then
CE.CA
x aˆ  y bˆ  zcˆ cannot be equal to cos  
CE C A
A)1 B) 2 C.2 D.3
b 
sol: (A,B)   c  c
4 
 
a, b, c form an equilateral triangle and angle cos   
b 
2 c c
between each pair is 4
3
2
 xa  yb  zc  x 2  y 2  z 2  xy  yz  zx b.c
2
c 
 4 3 7
b 8
1 2 2 2
c c

  x  y    y  z    z  x   4
2
1
1  1  4

W.E-7:If the distance of the point B i  2 j  3k from 
Minimum value  the line which is passing through
2
=3 
A 4i  2 j  2k  and Parallel to the vector
 xa  yb  zc  3
c  2i  3 j  6k is  then  6   4   2  1 is
A.1001 B.1101 C.1111 D.1011
W.E-6:In an Isosceless triangle ABC, AB  BC  8 .
Sol: (D)
A point E divides AB internally in the ratio 1 :3 Given B  1, 2,3
then the angle between CE and CA where
A   4, 2, 2  and
CA  12 is
c  2i  3 j  6 k
 7 
1 3 7

cos 1
  cos  
A. B.  8 
 8   
1
 7 
1 3 7

C. cos  4  D. cos  4  A
    c C
Sol: (B)
Let ‘A’ be the fixed point and AB  b, AC  c AB  c
Then Then    10
c
b  8 , c  8 , b  c  12
  6   4   2  1  1000  100  10  1  1111

120 MATHS BY Er.ROHIT SIR

,VECTOR ALGEBRA JEE ADVANCED

W.E-8: a  i  k , b  i  j and c  i  2 j  3k      
a b  b c  c a
 
be three given vectors. if r is a vector such p
  
that r  b  c  b and r.a  0 then the value
3 p / 2   p / 2  p
 
p
of r.b is 
Sol: (9) 3p
  3
Given r  b  c  b p

Taking cross product on both sides with a W.E-10:If the planes x  cy  bz  0 , cx  y  az  0
and bx  ay  z  0 Pass through a line then the
   
 r b a  cb a value of a 2  b 2  c 2  2abc is
Sol: (1)
  r.a  b   a.b  r   c.a  b   a.b  c Given plane are
x  cy  bz  0.......(1)
 0  r  4b  c
cx  y  az  0.......(2)
 r  4b  c bx  ay  z  0.......(3)
 r  3i  6 j  3k Equation of plane passing through the line of
intersection of planes (1) and (2) may be taken
 r.b  3  6  9 as
W.E-9:Let O be an interior point of ABC such that  x  cy  bz     cx  y  az   0.........(4)
   
OA  2OB  3OC  0, Then the ratio of the Now, Planes (3) and (4) are same
area of ABC to the area of AOC is 1  c   c    b  a
  
Sol: (3) b a 1
      By Eliminating , we get
Area of ABC 1/ 2  a  b  b  c  c  a
   a 2  b 2  c 2  2abc  1
Area of AOC 1/ 2  a  b
 W.E-11:ABCD is a square of unit side. It is folded along
Now a  2 b  3 c  0 the diagonal AC, So that the plane ABC is
     Perpendicular to the plane ACD. The shortest
cross with b , a  b  3c  b  0 distance between AB and CD is
     1 3 2
 a , 2a  b  3a  c  0
A) 3 B) C. D.
    3 2 3
 a b  3 b c   Sol: (D)

  3     C
Hence, a  b   c  a   3 b  c
2
  D
  
Let  c  a   p. Them
N
 
  3p   p
a b  b c 
2 2 A B
Hence, the ratio is Let Square ABCD intially lies in xy-plane with A
lying at Origin , AB along x-axis and AD along
y-axis then AB  BC  CD  AD  1

MATHS BY Er.ROHIT SIR 121

, JEE ADVANCED VECTOR ALGEBRA
Let ' N ' be the foot of peependicular from ‘B’ to Now shortest dist an ce  d
1
AC then BN   m l n  m  l m n
2   d
  d
Let B be new position of B after folding along
' l nm ab sin
diagonal AC then Co-ordinates of various points
in 3D are  l m n   abd sin 
A =(0,0,0), B =(1,0,0) ,C=(1,1,0),D =(0,1,0)
1 1
1 1 1  1 1   volume = l m n  abd sin
B'   , ,  , N   , ,0 6 6
2 2 2 2 2  W.E-13:Let a  i  2 j  2k , b  2i  3 j  6k and

Now AB line equation is
c  4i  4 j  7 k . A vector which is equally
1 1 1  inclined to these three vectors is perpendicular
r t i j k
2 2 2  to the plane passing through the points pa, qb

CD line equation is r   i  j   s  i  and rc . If p,q,r are the least possible positive
 shortest distance integers, then the value of p  q  r is
1 1 0 A)19 B)37 C)53 D)111
Sol: (B)
1 1 1 Let r be required vector then
2 2 2
= 
a  c b d 
 1 0 0 2  r, a    r, b    r, c 
 
bd 1
 k j
1 3 cos  r , a   cos  r , b   cos  r , c 
2 2
x2y 2z 2x3y 6z 4x4y 7z
W.E-12:The length of two opposite edges of a     k say
tetrahedron are a,b and their shortest distance 3 7 9
is d and angle between them is  then volume of  x  2 y  2 z  3k ..........(1)
tetrahedron is 2 x  3 y  6 z  7 k ...........(2)
1 2 4 x  4 y  7 z  9k ...........(3)
A. abd sin  B. abd sin 
6 6 by solving above equations we get
1 x : y : z  3:5:7
C. d sin  D. abd cos 
6  r  3i  5 j  7 k
Sol: (A)
Since r is perpendicular to the plane passing
C
through the points pa, pb, rc

O A
  
 r. pa  pb  0, r. qb  rc  0 
 p  r.a   q  r.b  and q  r.b   r  r.c 
B  p  27   q  63  r  81
Let OA  l , OB  m , OC  n then
 p q r
The Equation of line OA is r  tl .............(1)   
 21 9 7
and Equation of line BC is  least possible value of p  q  r  37
W.E-14:Let the position vector of the orthocentre of
 
r  m  s n  m ................(2)
ABC be r , then which of the following
Since OA, BC are opposite edges statement(s) is/are correct ( Given position


122 MATHS BY Er.ROHIT SIR

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller UpperCrust. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for £12.67. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

73918 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy revision notes and other study material for 14 years now

Start selling
£12.67
  • (0)
  Add to cart