100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Integration using trigonometric identities questions with full Worked solutions £9.16
Add to cart

Exam (elaborations)

Integration using trigonometric identities questions with full Worked solutions

 0 purchase

This document will allow university Math students to practice integration using trigonometric identities. All the questions are similar in style and full worked solutions have been provided. This will allow you to understand how a certain question in this document is answered and then you will be a...

[Show more]

Preview 3 out of 27  pages

  • November 13, 2024
  • 27
  • 2024/2025
  • Exam (elaborations)
  • Questions & answers
All documents for this subject (5)
avatar-seller
alikhalid2
Integration using trigonometric identities

2 4 7 4
1) Calculate ∫ 5
𝑠𝑖𝑛 𝑥 − 8
𝑐𝑜𝑠 𝑥 𝑑𝑥

2 1 1
𝑠𝑖𝑛 𝑥 = 2
− 2
𝑐𝑜𝑠2𝑥
4 1 1 2
𝑠𝑖𝑛 𝑥 = ( 2 − 2
𝑐𝑜𝑠2𝑥)

2 1 1
𝑐𝑜𝑠 𝑥 = 2
+ 2
𝑐𝑜𝑠2𝑥
4 1 1 2
𝑐𝑜𝑠 𝑥 = ( 2 + 2
𝑐𝑜𝑠2𝑥)

2 1 1 2 7 1 1 2
∫ 5
(2 − 2
𝑐𝑜𝑠2𝑥) − 8
(2 + 2
𝑐𝑜𝑠2𝑥) 𝑑𝑥
2 1 1 1 1 2 7 1 1 1 1 2
= ∫ 5
(4 − 4
𝑐𝑜𝑠2𝑥 − 4
𝑐𝑜𝑠2𝑥 + 4
𝑐𝑜𝑠 2𝑥) − 8
(4 + 4
𝑐𝑜𝑠2𝑥 + 4
𝑐𝑜𝑠2𝑥 + 4
𝑐𝑜𝑠 2𝑥) 𝑑𝑥
2 1 1 1 2 7 1 1 1 2
= ∫ 5
(4 − 2
𝑐𝑜𝑠2𝑥 + 4
𝑐𝑜𝑠 2𝑥) − 8
(4 + 2
𝑐𝑜𝑠2𝑥 + 4
𝑐𝑜𝑠 2𝑥) 𝑑𝑥
1 1 1 2 7 7 7 2
= ∫ 10
− 5
𝑐𝑜𝑠2𝑥 + 10
𝑐𝑜𝑠 2𝑥 − 32
− 16
𝑐𝑜𝑠2𝑥 − 32
𝑐𝑜𝑠 2𝑥 𝑑𝑥
19 51 19 2
= ∫− 160
− 80
𝑐𝑜𝑠2𝑥 − 160
𝑐𝑜𝑠 2𝑥 𝑑𝑥

2 1 1
𝑐𝑜𝑠 𝑥 = 2
+ 2
𝑐𝑜𝑠2𝑥
2 1 1
𝑐𝑜𝑠 2𝑥 = 2
+ 2
𝑐𝑜𝑠4𝑥

19 51 19 1 1
= ∫− 160

80
𝑐𝑜𝑠2𝑥 − 160 (2 + 2
𝑐𝑜𝑠4𝑥) 𝑑𝑥
19 51 19 19
= ∫− 160
− 80 𝑐𝑜𝑠2𝑥 − 320 − 320
𝑐𝑜𝑠4𝑥 𝑑𝑥
57 51 19
= ∫− 320
− 80 𝑐𝑜𝑠2𝑥 − 320 𝑐𝑜𝑠4𝑥 𝑑𝑥
57 51 19
=− 320
𝑥 − 160 𝑠𝑖𝑛2𝑥 − 1280 𝑠𝑖𝑛4𝑥 + 𝐶


FINAL ANSWER

57 51 19
=− 320
𝑥 − 160
𝑠𝑖𝑛2𝑥 − 1280
𝑠𝑖𝑛4𝑥 + 𝐶

, 3 4 2 4
2) Calculate ∫ 7
𝑠𝑖𝑛 𝑥 − 9
𝑐𝑜𝑠 𝑥 𝑑𝑥

2 1 1
𝑠𝑖𝑛 𝑥 = 2
− 2
𝑐𝑜𝑠2𝑥
4 1 1 2
𝑠𝑖𝑛 𝑥 = ( 2 − 2
𝑐𝑜𝑠2𝑥)

2 1 1
𝑐𝑜𝑠 𝑥 = 2
+ 2
𝑐𝑜𝑠2𝑥
4 1 1 2
𝑐𝑜𝑠 𝑥 = ( 2 + 2
𝑐𝑜𝑠2𝑥)

3 1 1 2 2 1 1 2
= ∫ 7
(2 − 2
𝑐𝑜𝑠2𝑥) − 9
(2 + 2
𝑐𝑜𝑠2𝑥) 𝑑𝑥
3 1 1 1 1 2 2 1 1 1 1 2
= ∫ 7
(4 − 4
𝑐𝑜𝑠2𝑥 − 4
𝑐𝑜𝑠2𝑥 + 4
𝑐𝑜𝑠 2𝑥) − 9
(4 + 4
𝑐𝑜𝑠2𝑥 + 4
𝑐𝑜𝑠2𝑥 + 4
𝑐𝑜𝑠 2𝑥) 𝑑𝑥
3 1 1 1 2 2 1 1 1 2
= ∫ 7
(4 − 2
𝑐𝑜𝑠2𝑥 + 4
𝑐𝑜𝑠 2𝑥) − 9
(4 + 2
𝑐𝑜𝑠2𝑥 + 4
𝑐𝑜𝑠 2𝑥) 𝑑𝑥
3 3 3 2 1 1 1 2
= ∫ 28
− 14
𝑐𝑜𝑠2𝑥 + 28
𝑐𝑜𝑠 2𝑥 − 18
− 9
𝑐𝑜𝑠2𝑥 − 18
𝑐𝑜𝑠 2𝑥 𝑑𝑥
13 41 13 2
= ∫ 252
− 126
𝑐𝑜𝑠2𝑥 + 252
𝑐𝑜𝑠 2𝑥 𝑑𝑥

2 1 1
𝑐𝑜𝑠 𝑥 = 2
+ 2
𝑐𝑜𝑠2𝑥
2 1 1
𝑐𝑜𝑠 2𝑥 = 2
+ 2
𝑐𝑜𝑠4𝑥

13 41 13 1 1
= ∫ 252
− 126
𝑐𝑜𝑠2𝑥 + 252
( 2 + 2 𝑐𝑜𝑠4𝑥) 𝑑𝑥
13 41 13 13
= ∫ 252 − 126
𝑐𝑜𝑠2𝑥 + 504
+ 504 𝑐𝑜𝑠4𝑥 𝑑𝑥
13 41 13
= ∫ 168 − 126
𝑐𝑜𝑠2𝑥 + 504
𝑐𝑜𝑠4𝑥 𝑑𝑥
13 41 13
= 168
𝑥 − 252
𝑠𝑖𝑛2𝑥 + 2016
𝑠𝑖𝑛4𝑥 + 𝐶


FINAL ANSWER

13 41 13
= 168
𝑥− 252
𝑠𝑖𝑛2𝑥 + 2016
𝑠𝑖𝑛4𝑥 + 𝐶

, 4 4
3) Calculate ∫5𝑠𝑖𝑛 𝑥 − 8𝑐𝑜𝑠 𝑥 𝑑𝑥

2 1 1
𝑠𝑖𝑛 𝑥 = 2
− 2
𝑐𝑜𝑠2𝑥
4 1 1 2
𝑠𝑖𝑛 𝑥 = ( 2 − 2
𝑐𝑜𝑠2𝑥)

2 1 1
𝑐𝑜𝑠 𝑥 = 2
+ 2
𝑐𝑜𝑠2𝑥
4 1 1 2
𝑐𝑜𝑠 𝑥 = ( 2 + 2
𝑐𝑜𝑠2𝑥)

1 1 2 1 1 2
∫5( 2 − 2
𝑐𝑜𝑠2𝑥) − 8( 2 + 2
𝑐𝑜𝑠2𝑥) 𝑑𝑥
1 1 2 1 1 2
= ∫5( 2 − 2
𝑐𝑜𝑠2𝑥) − 8( 2 + 2
𝑐𝑜𝑠2𝑥) 𝑑𝑥
1 1 1 1 2 1 1 1 1 2
= ∫5( 4 − 4
𝑐𝑜𝑠2𝑥 − 4
𝑐𝑜𝑠2𝑥 + 4
𝑐𝑜𝑠 2𝑥) − 8( 4 + 4
𝑐𝑜𝑠2𝑥 + 4
𝑐𝑜𝑠2𝑥 + 4
𝑐𝑜𝑠 2𝑥) 𝑑𝑥
1 1 1 2 1 1 1 2
= ∫5( 4 − 2
𝑐𝑜𝑠2𝑥 + 4
𝑐𝑜𝑠 2𝑥) − 8( 4 + 2
𝑐𝑜𝑠2𝑥 + 4
𝑐𝑜𝑠 2𝑥) 𝑑𝑥
5 5 5 2 2
= ∫ 4
− 2
𝑐𝑜𝑠2𝑥 + 4
𝑐𝑜𝑠 2𝑥 − 2 − 4𝑐𝑜𝑠2𝑥 − 2𝑐𝑜𝑠 2𝑥 𝑑𝑥
3 13 3 2
= ∫− 4
− 2
𝑐𝑜𝑠2𝑥 − 4
𝑐𝑜𝑠 2𝑥 𝑑𝑥

2 1 1
𝑐𝑜𝑠 𝑥 = 2
+ 2
𝑐𝑜𝑠2𝑥
2 1 1
𝑐𝑜𝑠 2𝑥 = 2
+ 2
𝑐𝑜𝑠4𝑥

3 13 3 1 1
= ∫− 4 2

𝑐𝑜𝑠2𝑥 − 4 ( 2 + 2 𝑐𝑜𝑠4𝑥) 𝑑𝑥
3 13 3 3
= ∫− 4
− 2 𝑐𝑜𝑠2𝑥 − 8 − 8 𝑐𝑜𝑠4𝑥 𝑑𝑥
9 13 3
= ∫− 8
− 2 𝑐𝑜𝑠2𝑥 − 8 𝑐𝑜𝑠4𝑥 𝑑𝑥
9 13 3
=− 8
𝑥 − 4 𝑠𝑖𝑛2𝑥 − 32 𝑠𝑖𝑛4𝑥 + 𝐶


FINAL ANSWER

9 13 3
=− 8
𝑥− 4
𝑠𝑖𝑛2𝑥 − 32
𝑠𝑖𝑛4𝑥 + 𝐶

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller alikhalid2. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for £9.16. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

62774 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy revision notes and other study material for 15 years now

Start selling
£9.16
  • (0)
Add to cart
Added