100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Advanced Programming Summary £5.97
Add to cart

Summary

Advanced Programming Summary

 52 views  1 purchase
  • Module
  • Institution
  • Book

Advanced Programming Summary

Preview 6 out of 86  pages

  • Yes
  • January 9, 2021
  • 86
  • 2018/2019
  • Summary
avatar-seller
Advanced Programming Samenvatting



Index
1 Chapter 15 3
1.1 An Overview of the Collections Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Arrays vs. ArrayList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Arrays/ArrayList vs. LinkedList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Linked Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.1 Linked Lists Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5.1 Example: Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.2 Programming Tip 15.1: Use Interface References to Manipulate Data Structures . . . . . . . . 16
1.6 Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.7 Stacks, Queues, and Priority Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.7.1 Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.7.2 Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.7.3 Priority Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.8 Stacks and Queue Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.8.1 Example: Polish calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.8.2 Backtracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Chapter 4: Algorithm Analysis 29
2.1 Experimental Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.2 Counting Primitive Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.3 Measuring Operations as a Function of Input Size . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.4 Focusing on the Worst-Case Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 The Seven Functions Used in This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.1 The Constant Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.2 The Logarithm Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.3 The Linear Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.4 The N-log-N Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.5 The Quadratic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.6 The Cubic Function and Other Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.7 The Exponential Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.8 Comparing Growth Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Asymptotic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.1 The Big-Oh Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.3 Big-Omega . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.4 Big-Theta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.5 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.6 Examples of Algorithm Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Chapter 5: Recursion 44
3.1 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.1 The Factorial function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.2 Drawing an English Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.3 Binary Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.4 File Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Analyzing Recursive Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.1 Computing Factorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.2 Drawing an English Ruler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52


1

,INDEX


3.2.3 Performing a Binary Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.4 Computing Disk Space Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Further Examples of Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 Linear Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.2 Recursive Algorithms for Computing Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.3 Binary Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.4 Multiple Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Designing Recursive Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5 Recursion Run Amok . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.1 An Inefficient Recursion for Computing Fibonacci Numbers . . . . . . . . . . . . . . . . . . . . 60
3.5.2 An Efficient Recursion for computing Fibonacci Numbers . . . . . . . . . . . . . . . . . . . . . 60

4 Chapter 6: Stacks, Queues and Deques 61
4.1 Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1.1 A simple Array-Based Stack Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.2 Implementing a Stack with a Singly Linked List . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.3 Reversing an Array Using a Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.4 Matching Parentheses and HTML Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.5 Matching Tags in a Markup Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.1 Array-Based Queue Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.2 Implementing a Queue with a Singly Linked List . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.3 A Circular Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Double-Ended Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.1 Implementing a Deque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2 The Double-Ended Queue (Deque) ADT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Chapter 7: List and Iterator ADTs 76
5.1 Array List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.1.1 Amortized Analysis of Dynamic Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1.2 Java’s StringBuilder class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Positional Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.1 Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.2 The Positional List Abstract Data Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.3 Doubly Linked List Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3 Iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86




2

,1 CHAPTER 15


1 Chapter 15
1.1 An Overview of the Collections Framework
Each interface type is implemented by one or more classes. Each collection class implements an interface from a
hierarchy.

java.util.Collection → Collection is an interface.

Each class is designed for a specific type of storage.

Figuur 1: Interfaces and Classes in the Java Collections Framework




A collection groups together elements and allows them to be retrieved later.

When you need to organize multiple objects in your program, you can place them into a collection. The collection
interface has methods for adding and removing elements. Because all collections implement this interface, its methods
are available for all collection classes. For example, the size method reports the number of elements in any collection.

A list is a collection that remembers the order of its elements.

Unlike an array list, a linked list allows speedy insertion and removal of elements in the middle of the list.

A list is a collection that remembers the order of its elements.

You use a list whenever you want to retain the order that you established.

Order matters: On your bookshelf, you may order books by topic. A list is an appropriate data structure
for such a collection because the ordering matters to you.
ArrayList → Stores a list of items in a dynamically sized array
LinkedList → Allows speedy insertion and removal of items from the list

Order does not matter: A mail-order dealer of books. Without browsing the shelves, there is no need to order
books by topic. Such a collection without an intrinsic order is called a set.
HashSet → Uses hash tables to speed up finding, adding and removing elements
TreeSet → Uses a binary (search) tree to speed up finding, adding and removing elements.




A set is an unordered collection of unique elements.

Because a set does not track the order of elements, it can arrange them in a way that speeds up the operations
of finding, adding, and removing elements.
− Hash tables

− Binary search trees



3

,1 CHAPTER 15


Another way of gaining efficiency in a collection is to reduce the number of operations.

A stack remembers the order of its elements, but it does not allow you to insert elements in every position. You can
add and remove elements only at the top.

In a queue, you add items to one end (the tail) and remove them from the other end (the head).
E.g. You could keep a queue of books, adding required reading at the tail and taking a book from the head whenever
you have time to read another one.
E.g. A line of people waiting for a bank teller.

A map keeps associations between key and value objects.

A map manages associations between keys and values. Every key in the map has an associated value. The map
stores the keys, values and the associations between them.
E.g. Consider a library that puts a bar code on each book. The program used to check books in and out needs to
look up the book associated with each bar code.

Keys → Provides an easy way to represent an object (such as a numeric bar code).
Values → The actual object that is associated with the key.
List, Queueand Set are specialized interfaces that inherit from the Collection interface. All share the following
commonly used methods.




4

,1 CHAPTER 15


Tabel 1: The Methods of the Collection Interface

The ArrayList class implements the Collection inter-
Collection<String> coll = new ArrayList<String>();
face


The TreeSet class also implements the Collection in-
coll = new TreeSet<String>();
terface


Gets the size of the collection. n is now 0.
int n = coll.size();



Adds elements to the collection
coll.add("Harry");
coll.add("Sally");



Returns a string with all elements in the collection.
String s = coll.toString();
s is now "[Harry, Sally]"


Invokes the toString method and prints [Harry, Sally]
System.out.println(coll);



Removes an element from the collection, returning
coll.remove("Harry");
false if the element is not present. b is false.
boolean b = coll.remove("Tom");



Checks whether this collection contains a given ele-
b = coll.contains("Sally");
ment. b is now true.


You can use the "for each"loop with any collection.
for (String s : coll)
This loop prints the elements on separate lines.
{
System.out.println(s);
}



You use an iterator for visiting the elements in the
Iterator<String> iter = coll.iterator()
collection




5

, 1 CHAPTER 15


1.2 Arrays vs. ArrayList
Arrays: ArrayList :
− Static in size − Dynamic in size

− Slightly better performance (hardly noticeable, − Slightly lower performance (due to indirection
more accentuated when using primitive types) methods as add() and get())
− Stores primitive types (int, double, etc) (in ad- − Cannot store primitive types (uses autoboxing)
dition to objects)
− Uses iterators (iterator() from
− Uses for loop or for each loop to iterate through java.util.Collection (allows next()
array and remove()) or list iterator() from
java.util.List (allows next() and previous(),
− Type safe (can store only objects of a certain add() and remove())
type)
− Type safe (by means of generics)
− Length given by .length public field
− Length given by size() public method
− Can be multidimensional
Integer arrayobject[][] = new − Is always unidimensional
Integer[3][2]; ArrayList<Integer> arraylist = new
ArrayList<Integer>()
Conclusion: use for fixed size arrays.
Conclusion: use for variable size arrays.



1.3 Arrays/ArrayList vs. LinkedList
Arrays/ArrayList LinkedList
− Preserves order − Preserves order
− ArrayList uses an array in the implementation − Implemented as a doubly linked list

− (+) Random access − (-) Sequential access
− (-) Inefficient for add/remove elements (element − (+) Efficient for add/remove elements (no ele-
shifting) ment shifting)
− ArrayList implements the List interface − Implements List and Dequeue interfaces

Conclusion: fast access to static sequential data. Conclusion: store dynamic sequential data



1.4 Linked Lists
A linked list is a data structure used for collecting a sequence of objects that allow efficient addition and removal of
elements in the middle of the sequence.

Linked lists use references to maintain an ordered list of ’nodes’.

The ’head’ of the list reference the first node. Each node has a value and a reference to the next node.

Figuur 2: A Linked List




They can be used to implement
− A List Interface


6

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller studenteconometrics. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for £5.97. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

48756 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy revision notes and other study material for 15 years now

Start selling
£5.97  1x  sold
  • (0)
Add to cart
Added