100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Finance 1 Week 2 Summary €4,09
In winkelwagen

Samenvatting

Finance 1 Week 2 Summary

 3 keer bekeken  0 keer verkocht

Finance 1 Week 2 Summary including readings

Voorbeeld 2 van de 8  pagina's

  • 5 juli 2021
  • 8
  • 2019/2020
  • Samenvatting
Alle documenten voor dit vak (7)
avatar-seller
apollinecroc
Week 2:

Preparation: Chap 4: The Time
Value of Money

Stream of cash flows: a series of cash flows lasting several periods. Can be
represented on a timeline: important first step in organizing and then solving a
financial problem.

The three rules of Time Travel:
- Comparing and combining values: It is only possible to compare or
combine values at the same point in time, because a dollar today and a
dollar in one year are not equivalent.
- Moving Cash Flows Forward in Time: compounding = our second rule
stipulates that to move a cash flow forward in time, you must compound
it. Compound interest: the effect of earning “interest on interest”.
Future Value of a Cash Flow: FVn = C x (1 + r)n
- Moving Cash Flows Back in Time: Discounting = the process of moving a
value or cash flow backward in time – finding the equivalent value of today
of a future cash flow.
Present value of a Cash Flow: PV = C / (1 + r) n

N
Present Value of a Cash Flow Stream: PV = ∑ PV (C n )
n=0
Future Value of a Cash Flow stream with a Present Value of PV: FV n = PV x (1 +
r)n

 Aim: compare the costs and benefits of a project to evaluate a long-term
investment decision.

NPV = PV(benefits) – PV(costs)
NPV = PV(benefits – costs) present value of cash flows of the opportunity

Perpetuity: a stream of equal cash flows occurring at regular intervals and last
forever. (eg british government bond: consol).

The first cash flow occurs at the end of the first period = payment in arrears.

C
PV = ∑( n
n =1 1+r )
When investing, we withdraw the interest we have earned, C = r x P, leaving the
principal P.
Present Value of a Perpetuity: PV (C in perpetuity) = C/ r

Annuity: a stream of N equal cash flows paid at regular intervals. ≠ w perpetuity
is that it ends.
Pinitial investment = PV (annuity of C for N periods) + PV ( P in period N)
PV (annuity of C for N periods) = P – PV (P in period N)
−P
PV (annuity of C for N periods) = P
( 1+ r )N

, Present Value of an Annuity: PV (annuity of C for N periods with the interest rate
−1
r) = C x (1/ r) (1 ¿
( 1+ r )N
Future Value of Annuity: FV (annuity) = C x (1/r) ((1 + r)N – 1)

Growing Perpetuity: a stream of cash flows occurring at regular intervals and
grow at a constant rate forever. The first payment doesn’t include growth.

C ( 1+ g )n−1
PV = ∑ n
n =1 ( 1+r )
Present Value of a Growing Perpetuity: PV(growing perpetuity) = C / (r – g)

Growing annuity: a stream of N growing cash flows, paid at regular intervals. It is
a growing perpetuity that eventually comes to an end. The fist cash flow still
arrives at the end of the first period and the first cash flow does not grow.
1 1+ g N
Present Value of a Growing Annuity: PV = C¿ (1− )
r−g 1+r

PMT present value of annuity + FVpresent value of final payment + PV initial amount =0

Everything about annual cash flow streams applies to monthly cash flows
streams as long as the interest rate is specified as a monthly rate, the number of
periods is expressed in months.

Loan payment problem: to solve it, refer the load principal as the present value.
Then just has to inverse the annuity formula.
P
Loan or Annuity Payment: C = ∗(1− 1 )
1
r ( 1+ r )N

Internal rate of return (IRR) = the interest rate setting the net present value of
cash flow to 0
IRR with 2 cash flows = (FV / P)1/N – 1  compound annual growth rate
(CAGR)
IRR of growing perpetuity = (C/P) + g



Chap 5: Interest rates

Interest rates are often stated as effective annual rate (EAR): indicates the actual
amount being earned at the end of one year.

Adjusting the Discount Rate to Different Time periods: changing the power of the
interest rate (1 + r)
General Equation for Discount Rate Period Conversion: Equivalent n-Period
Discount Rate = (1+r)n –1

Annual Percentage Rate (APR) indicates the amount of simple interest earned in
one year, without the effect of compounding.
A way of quoting a monthly interest rate, rather than an annual one.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper apollinecroc. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €4,09. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 59063 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€4,09
  • (0)
In winkelwagen
Toegevoegd