Two independent SRSs
Count of successes X
To compare the two populations, we use the difference
between two sample proportions
D= ^p1− ^p 2
When both sample sizes are sufficiently large, the sampling
distribution of the Difference D is approximately Normal
The additional rule for means, the mean of D is the difference
of the mean:
μD =μ ^p −μ ^p = p1− p2
1 2
D = ^p1−^p2 the difference between the sample proportions is
an unbiased estimator of the population difference p1 – p2
The additional rule for variances tells us that the variance of D
is the sum of the variances
2 2 2
σ D=σ ^p +σ ^p
1 2
p (1−p 1) p2 (1− p 2)
¿ 1 +
n1 n2
Standard deviation SE D = 1
√ p (1− p 1) p2 (1− p 2)
n1
+
n2
Large-sample confidence interval for a difference in proportions
For a confidence interval of difference we replace the
unknown parameters in the standard deviation by estimates
to obtain an estimated standard deviation
o M ± z*SED
Because it is easier to discuss positive numbers, we generally
choose the first population to be the one with the higher
proportion
Plus four confidence interval fro a difference in proportions
A small modification of the sample proportion can greatly
improve the accuracy of confidence intervals
The plus four estimates of the two population proportions are
~ X +1 X +1
p1= 1 ∧~ p2= 2
n1 +2 n2 +2
The estimated difference between the populations is
~ ~ ~
D= p1− p2
~
And the standard deviation of D is approximately
√
σ ~D= 1
p (1− p1 ) p 2 (1− p2 )
n1 +2
+
n2+ 2
, ~
p1 (1−~ p 1) ~
p (1−~
SE~D =
√ n1 +2
+ 2
n2 +2
p 2)
Although the interval includes the possibility that there is no
difference, corresponding to p1 = p2 or p1 – p2 = 0, we should
not conclude that there is no difference in the proportions
Significance test for a difference in proportions
X +X
^p= number of successes on bothsamples = 1 2
number of observations ∈both samples n 1+ n2
The estimate of p is called the pooled estimate because it
combines, or pools, the information from both samples
√ (
SE D = ^p ( 1− ^p )
p
1 1
+
n1 n2)
^p 1−^p2
Z statistic z=
SE Dp
X1+ X2
Pooled standard error p
√
SE D = ^p ( 1− ^p )
( n1 + n1 )
1 2
^p=
n1 +n2
The z test is based on the Normal approximation to the
binomial distribution
Relative risk
RR – relative risk
A relative risk of 1 means that the two proportions are equal
Relative risk is the ratio of two sample proportions:
^p
RR= 1
^p 2
Lecture 25
Differences vs. Ratios
Assume that in one population (A), 5% have a disease. In a
second population (B), 10% have a disease. How can we
compare these proportions?
o “There is a difference of 5% between population A and
population B.”
o “The prevalence of the disease is twice as great in
population B as in population A”
There are several method for comparing two proportions
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper Jana1234. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €2,99. Je zit daarna nergens aan vast.