Two-sample problems
o The goal of inference is to compare the responses of two
groups
o Each group is considered to be a sample from a distinct
population
o The responses in each group are independent of those in
the other group
A two-sample problem can arise from a randomized
comparative experiment that randomly divides the subject
into two groups and exposes each group to a different
treatment
comparing random samples separately selected from two
populations is also a two-sample problem
no matching of the units in the two samples
the two samples might be of different sizes
we can present two-sample data in a back-to-back stemplot or
side-by-side boxplot
we have to independent samples, from two distinct
populations
we can compare the two population means, either by giving a
CI for μ1−μ2 or by testing the hypothesis of no difference,
H 0 : μ 1=μ2
The two-sample z statistic
μ1−μ2= x́ 1− x́ 2
σ 21 σ 22
the variance of the difference x́ 1−x́ 2 is +
n1 n 2
large samples are needed to see the effects of small
differences
two-sample z statistic – suppose that x́ 1 is the mean of an
SRS of size n1 drawn from an N( μ1 ,σ 1 ¿ population and that
x́ 2 has the mean of an independent SRS of size n2 drawn
from N( μ2 , σ 2 ¿ population. Than the two-sample z statistic:
( x́1 −x́2 ) −(μ1 −μ 2)
z=
√
o σ 21 σ 22
+
n1 n2
o has the standard Normal N(0,1) sampling distribution
The two-sample t procedures
σ 1 and σ 2 are not known
, ( x́1− x́2 ) −(μ1 −μ 2)
t=
√
s21 s22
+
n1 n2
this statistic does not have a t distribution, because we have
two standard deviations by their estimates
t(k) distribution – approximation for the degrees of freedom k
we use these approximations to find approximate values of t*
for CIs and to find approximate p-values for significance tests
The two-sample t significance test
the two-sample t significance test – suppose that an SRS of
size n1 is drawn from a Normal population with unknown
mean μ1 and that an independent SRS of size n2 is drawn
from another Normal population with unknown mean μ2 . To
test the hypothesis H 0 : μ 1=μ2 , compute the two-sample t
statistic
( x́ 1−x́ 2)
t=
√
o s 21 s 22
+
n1 n 2
o and use p-values or critical values for the t(k)
distribution, where the degrees of freedom k are either
approximated by software or are the smaller of
n1−1∧n2−1
conservative inference procedures for comparing μ1∧μ2 are
obtained from the two-sample t statistic by using the t(k)
distribution with degrees of freedom k equal to the smaller of
n1−1∧n2−1
more accurate probability values can be obtained by
estimating the degrees of freedom from the data. This is the
usual procedure for statistical software
The two-sample t confidence interval
the two-sample t confidence interval – suppose that an SRS of
size n1 is drawn from a Normal population with unknown
mean μ1 and that an independent SRS of size n2 is drawn
from another Normal population with unknown mean μ2 .
The confidence interval for μ1−μ2 given by
o
s 21 s22
( x́ 1−x́ 2 ) ± t *
+
n 1 n2 √
o has confidence level at least C no matter what the
population standard deviations may be. Here t* is the
value for the t(k) density curve with area C between –t*
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper Jana1234. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €2,99. Je zit daarna nergens aan vast.