1 – Conceptualization, Operationalization & Data Preparation
Academic research:
Hourglass model for scientific research:
Introduction
o Problem introduction
o Problem statement and
o Research question(s)
Literature review
o (Hypotheses &) conceptual model
Research method
Analysis and results
Conclusion & discussion
o Scientific implications
o Management implications
o Limitations & further research (validity)
Where does research start:
1. Problem (often action oriented)
2. Research question (information oriented)
3. Literature
4. Conceptual model
5. Propositions (qualitative)/Hypotheses (quantitative)
Conceptualization:
=> ‘drawing boundaries around terms to make them tangible’
What is meant with ‘X’ or ‘Y’ in this research
Goal => elimination of vagueness (how many cm is a so called ‘tall’ person) and ambiguity (‘I
bought a)
Come to a conceptual model
o Concepts (& dimension)
Note: a variable in the model is something that VARIES and is
measurable (using one or more indicators)
o Relations:
Dependent/ independent
Antecedents/ outcomes
Moderating/ mediating variables
Operationalization:
How should we measure concept X?
Decide which empirical observations should be made to measure the existence of a
concept
Standardised operationalisations are essential if different researchers have to take
similar measures of similar entities.
Or: to define a concept or variable in such a way that we can measure it
quantitatively.
translation into specific indicators and measuring questions.
,Collecting data:
(population/ sampling/ non-response => generalizability)
Exploratory/descriptive/causal research?
Qualitative/quantitative?
Survey?
Experiment?
Measurement level?
o On what scale did you measure your variable?
o
o
,Data Preparation:
Data analysis often comes in 2 stages:
1. Inspection and preparing data for actual analysis:
o Inspect data (items)
Which variable/measurement scales/coding schemes
Get a feeling for your data, descriptive, graphs
Cleaning your dataset
Oddities, missing/wrong values, outliers.
o Combining variables/items into new dimensions/ factors
2. Actual analysis, testing your hypothesis:
o Regression, cluster
Inspect data:
Missing data
o Listwise deletion → but you’ll be missing a lot of data then.
o Pairwise → So only delete the missing variables if the rest is reliable.
Weird values & outliers
o If impossible value → make it a missing value (or go back to respondent if
possible)
o Otherwise, outlier
What’s the effect on analysis?
Should we use in analysis?
, 2 – Factor Analysis
Marketing concepts are more often too complicated for 1 scales and are measured using
multi-item scales, e.g.:
These are called LATENT variables, or CONCEPTS or CONSTRUCTS
Yet, multi-item scales often have many (and overlapping) items which makes further analysis
complicated.
Multi-item scales: A scale consisting of multiple items, where an item is a single question or
statement to be evaluated.
o
Multicollinearity (if correlation is too high: if variables are highly correlated, it’s hard to
distinguish their individual effects in subsequent analyses)
Complexity
So, data reduction & simplification:
1. Factor analysis → to test or to dig up the constructs.
o To reduce a large(r) set of variables into a smaller set of uncorrelated, on
beforehand unknown, factors or dimensions.
o To test a theoretically assumed known factor structure in a set of items
(“does the factor solution in my data comply with the assumed/ hypothesized
factor structure?”)
2. Reliability analysis → then use this to test.
o To test the reliability of the known/ found underlying dimensions (by
measuring the internal consistency of a known set of items in each
o dimension)
After factor analysis (“Is the factor found ‘strong enough’ to continue
analysis with?”)
After using a set of items validated as a scale by theory (“Is the
theoretical scale also validated or ‘strong enough’ in my research?”)
Factor analysis: what is it about?
Purpose:
o Reduction of a large quantity of data by finding common variance to:
Retrieve underlying dimensions in your dataset, or,
Test if the hypothesized dimensions also exist in your dataset.
Variance → a measure of how data points differ from the mean.
Common variance → amount of variance that is shared among a set of items. If
one goes up it is likely that the other will also go up (unless it’s a reverse scale).
Two central questions:
1. How to reduce a large(r) set of variables into a smaller set of uncorrelated factors?
o Unknown number and structure
o Hypothesized number and structure
Whether the hypothesized dimensionality is visible in my dataset
2. How to interpret these factors (= underlying dimensions), and scores on these
factors?
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper lamotte01. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €9,49. Je zit daarna nergens aan vast.