EN: Calculus variant 2 (2WBB0) is a basis course of the Bachelor College at Eindhoven University of Technology. This means that all Bachelor TUe students should have completed one of the variants of this course. It is given in the first quartile of the first year. Calculus variant 2 is the average ...
Calculus Cheat sheet
Disclaimer: this is not actually meant for cheating. Research shows that making a “cheat
sheet” right before a test with all hard topics and then not actually using it during the test, is
an effective way to practice. This was the “cheat sheet” I made for Calculus variant 2 (2WBB0)
and I hope it can prove to be useful to you.
a d
() ()
b and e are perpendicular if a × d+ b ×e +c ×f =0.
c f
x x
Line l through a
⃗ and b⃗ with both of the form
() ()
y is: y =⃗a + λ ×( ⃗b−⃗a ).
z z
x x
⃗ , e⃗ ,
A plane through 3 vectors d
z () ()
⃗f of the form y is: y = ⃗d+ λ × ( d⃗ −⃗e )+ μ ×( ⃗d−⃗f ).
z
k
⃗ ⃗ ⃗
The normal vector of this is n=( d−⃗e ) × ( d− f )= l .
m ()
So the equation that follows from this is k × x +l × y +m × z=d . d is acquired after substituting d
⃗ into
the equation.
'
(a): 1) Use f ( b )=a to calculate b. 2) Calculate f ' (x).
Calculating ( f −1 )
−1 ' 1
3) Use ( f ) ( a )= to solve the equation.
f ' (b)
For the domain of f-1, determine the range of f by calculating lim f (x ) and lim f (x) .
x →e x→ ∞
A Taylor polynomial is defined as follows:
f ' ( a) f '' (a) 2
f n( a) n
Pn ( x )=f ( a )+ ( x−a )+ ( x −a ) +…+ ( x−a ) .
1! 2! n!
A point is a global maximum of f in x = a if f is decreasing when x ≥ a (for f ’(x) ≤ 0) and f is increasing
when x ≤ a (for f ‘(x) ≥ 0).
The linearization of f is f ( x )=f ( a ) + f ' ( a ) ( x −a ) at x = a.
B
When you have ∫ A dx =B+ c ∫ A dx , do: ( 1−c )∫ A dx=B and then ∫ A dx = 1−c .
dy g( x) dy g( x)
f ( t ) dt=f ( g ( x ) ) × g '( x ) and f ( t ) dt=f ( g ( x ) ) × g' ( x ) −f ( h ( x ) ) ×h' ( x ) .
dx a dx h(x)
f ( x )= A for x< c (with A and B both consisting of x’s and c’s) is
Determining all c for which { B for x ≥ c
continuous can be done as follows:
1) Determine c. 2) Use f(x) which nears x = c from left and right: lim f (x ) and lim f (x ).
x ↓c x ↑c
3) Then use lim f (x )=lim f ( x ) to find c (since that is the condition to being continuous.
x ↓c x ↑c
To be differentiable means to be continuous.
dy
The initial value-problem with =ky and y ( 0 )= y 0 has the unique solution y= y 0 × e kt.
dt
An integral equal to ∞ is divergent. An integral that is a number, e.g. 15 is convergent.
By Isabel Rutten
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper IsabelRutten. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €2,99. Je zit daarna nergens aan vast.