Voordeelbundel
CS-6515 Algorithms latest already passed
CS-6515 Algorithms latest already passed
[Meer zien]CS-6515 Algorithms latest already passed
[Meer zien]Voorbeeld 1 van de 3 pagina's
In winkelwagenCS6515 Midterm Review questions and answers
DFS outputs - ANSWER-pre array, post array, ccnum array, prev array 
BFS outputs - ANSWER-dist array, prev array 
Explore outputs - ANSWER-visited array. 
When to use Dijkstra's? - ANSWER-Works for both directed and undirected 
graphs. Must have only non-negative edge weights. 
Dijkstra's outputs ...
Voorbeeld 1 van de 3 pagina's
In winkelwagenDFS outputs - ANSWER-pre array, post array, ccnum array, prev array 
BFS outputs - ANSWER-dist array, prev array 
Explore outputs - ANSWER-visited array. 
When to use Dijkstra's? - ANSWER-Works for both directed and undirected 
graphs. Must have only non-negative edge weights. 
Dijkstra's outputs ...
Voorbeeld 2 van de 8 pagina's
In winkelwagenCS6515 Exam 3 questions and answers
CS6515 Exam 3 Study Guide questions and answers
Voorbeeld 1 van de 4 pagina's
In winkelwagenCS6515 Exam 3 Study Guide questions and answers
Weak Duality Theorem 
Feasible x <= Feasible y where c^(zT) x <= b^(T) y. Here c^(T) means transpose and 
same for b^(T). 
Weak Duality Theorem Corollary 1 
If Feasible x = Feasible y, they are optimums c^(T) x^(asterisk) = b^(T) y^(asterisk) . 
Weak Duality Theorem Corollary 2 
If Primal/Dual...
Voorbeeld 2 van de 7 pagina's
In winkelwagenWeak Duality Theorem 
Feasible x <= Feasible y where c^(zT) x <= b^(T) y. Here c^(T) means transpose and 
same for b^(T). 
Weak Duality Theorem Corollary 1 
If Feasible x = Feasible y, they are optimums c^(T) x^(asterisk) = b^(T) y^(asterisk) . 
Weak Duality Theorem Corollary 2 
If Primal/Dual...
Basic Properties of Trees - ANSWER-Tree's are undirected, connected and 
acyclic that connect all nodes. 
1. Tree on n vertices has (n-1) edges -> would have a cycle otherwise (more than 
n-1 edges means cycle) 
2. In tree exactly one path between every pair of vertices (otherwise it's not 
con...
Voorbeeld 2 van de 11 pagina's
In winkelwagenBasic Properties of Trees - ANSWER-Tree's are undirected, connected and 
acyclic that connect all nodes. 
1. Tree on n vertices has (n-1) edges -> would have a cycle otherwise (more than 
n-1 edges means cycle) 
2. In tree exactly one path between every pair of vertices (otherwise it's not 
con...
CS6515 Exam 2 Questions and answers 
If graph G has more than |V | − 1 edges, and there is a unique heaviest edge, 
then this edge cannot be part of a minimum spanning tree - ANSWER-False, 
because the unique heaviest edge may not be part of a cycle 
If G has a cycle with a unique heaviest edge e,...
Voorbeeld 1 van de 4 pagina's
In winkelwagenCS6515 Exam 2 Questions and answers 
If graph G has more than |V | − 1 edges, and there is a unique heaviest edge, 
then this edge cannot be part of a minimum spanning tree - ANSWER-False, 
because the unique heaviest edge may not be part of a cycle 
If G has a cycle with a unique heaviest edge e,...
Knapsack without repetition - ANSWER-k(0) = 0 
for w = 1 to W: 
if w_j >w: k(w,j) = k(w, j - 1) 
else: K(w,j) = max{K(w, j -1),K(w - w_j, j -1) + v_i} 
knapsack with repetition - ANSWER-knapsack repeat(w_i....w_n, w_i... w_n, B) 
k(0) = 0 
for i = 1 to n 
if w_i <= b & k(b) <v_i + K(b-w_i) ...
Voorbeeld 2 van de 10 pagina's
In winkelwagenKnapsack without repetition - ANSWER-k(0) = 0 
for w = 1 to W: 
if w_j >w: k(w,j) = k(w, j - 1) 
else: K(w,j) = max{K(w, j -1),K(w - w_j, j -1) + v_i} 
knapsack with repetition - ANSWER-knapsack repeat(w_i....w_n, w_i... w_n, B) 
k(0) = 0 
for i = 1 to n 
if w_i <= b & k(b) <v_i + K(b-w_i) ...
In a DAG, what makes a pair of vertices strongly connected? - answer-There is a 
path `V→W` and `W→V` 
Conservation of flow - answer-The flow into a vertex V must me equal to the flow 
out of the vertex V 
What problems are in the class NP-Hard? - answer-Any problem to which any 
problem in NP c...
Voorbeeld 1 van de 1 pagina's
In winkelwagenIn a DAG, what makes a pair of vertices strongly connected? - answer-There is a 
path `V→W` and `W→V` 
Conservation of flow - answer-The flow into a vertex V must me equal to the flow 
out of the vertex V 
What problems are in the class NP-Hard? - answer-Any problem to which any 
problem in NP c...
Traversing, reversing, copying, or otherwise working on the full graph running 
time - ANSWER-O(n+m) 
Checking, reading, or removing one vertex running time - ANSWER-O(1) 
Iterating, checking, reading, removing, or otherwise working on all vertices 
running time - ANSWER-O(n) 
Checking, reading, or ...
Voorbeeld 1 van de 3 pagina's
In winkelwagenTraversing, reversing, copying, or otherwise working on the full graph running 
time - ANSWER-O(n+m) 
Checking, reading, or removing one vertex running time - ANSWER-O(1) 
Iterating, checking, reading, removing, or otherwise working on all vertices 
running time - ANSWER-O(n) 
Checking, reading, or ...
Equivalence - ANSWER-"x ≡ y (mod N) means that x/N and y/N have the same 
remainder 
a ≡ b (mod N) and c ≡ d (mod N) then: 
a + c ≡ a + d ≡ b + c ≡ b + d (mod N) 
a - c ≡ a - d ≡ b - c ≡ b - d (mod N) 
a ** c ≡ a ** d ≡ b ** c ≡ b ** d (mod N) 
ka ≡ kb (mod N) for any inte...
Voorbeeld 2 van de 14 pagina's
In winkelwagenEquivalence - ANSWER-"x ≡ y (mod N) means that x/N and y/N have the same 
remainder 
a ≡ b (mod N) and c ≡ d (mod N) then: 
a + c ≡ a + d ≡ b + c ≡ b + d (mod N) 
a - c ≡ a - d ≡ b - c ≡ b - d (mod N) 
a ** c ≡ a ** d ≡ b ** c ≡ b ** d (mod N) 
ka ≡ kb (mod N) for any inte...
What is the running time for Longest Increasing Subsequence (LIS) - 
ANSWER-O(n^2) 
What is the recurrence for Longest Increasing Subsequence (LIS)? - 
ANSWER-L(i) = 1 + max{ L(j) | xj < xi} 
This reads as the answer to index I is 1 + the maximum over all j's between 1 
and i where xj is less th...
Voorbeeld 1 van de 4 pagina's
In winkelwagenWhat is the running time for Longest Increasing Subsequence (LIS) - 
ANSWER-O(n^2) 
What is the recurrence for Longest Increasing Subsequence (LIS)? - 
ANSWER-L(i) = 1 + max{ L(j) | xj < xi} 
This reads as the answer to index I is 1 + the maximum over all j's between 1 
and i where xj is less th...
How do you tell if a graph has negative edges? - ANSWER-when fitting graph on 
a table, if the number of moves decreases the w() from edge to edge, then there 
is a negative edge; 
check from 1 to n 
Why are all pairs Dist(y,z) n^2? - ANSWER-Because it builds a two dim table! 
What is the run time o...
Voorbeeld 3 van de 24 pagina's
In winkelwagenHow do you tell if a graph has negative edges? - ANSWER-when fitting graph on 
a table, if the number of moves decreases the w() from edge to edge, then there 
is a negative edge; 
check from 1 to n 
Why are all pairs Dist(y,z) n^2? - ANSWER-Because it builds a two dim table! 
What is the run time o...
Search Problem - ANSWER-A search problem is specified by an algorithm C that 
takes two inputs, an instance I and a proposed solution S, and runs in time 
polynomial in |I|. We say S is a solution to I if and only if C(I, S) = true 
Steps for an NP Proof - ANSWER-1. Demonstrate that problem B is in ...
Voorbeeld 3 van de 21 pagina's
In winkelwagenSearch Problem - ANSWER-A search problem is specified by an algorithm C that 
takes two inputs, an instance I and a proposed solution S, and runs in time 
polynomial in |I|. We say S is a solution to I if and only if C(I, S) = true 
Steps for an NP Proof - ANSWER-1. Demonstrate that problem B is in ...
Dynamic Programming Purpose - ANSWER-Used for optimization problems 
A set of choices must be made to get an optimal solution 
Find a solution with the optimal value (minimum or maximum) 
Dynamic Programming Applicability - ANSWER-Subproblems are not independent 
A divide-and-conquer approach would ...
Voorbeeld 2 van de 7 pagina's
In winkelwagenDynamic Programming Purpose - ANSWER-Used for optimization problems 
A set of choices must be made to get an optimal solution 
Find a solution with the optimal value (minimum or maximum) 
Dynamic Programming Applicability - ANSWER-Subproblems are not independent 
A divide-and-conquer approach would ...
Computer Science 201: Data Structures & 
Algorithms Ch. 15
Voorbeeld 1 van de 2 pagina's
In winkelwagenComputer Science 201: Data Structures & 
Algorithms Ch. 15
Dijkstra's algorithm 
O((n+m)log(n)). Used to find the shortest distance from one node to every other 
node in a graph. 
Inputs: 
- DAG G=(V,E) with edge weights 
- Source vertex s 
Output: 
- Array dist[...] that tells us the length of the shortest path from s to each other vertex. 
e.g. dist[v] g...
Voorbeeld 1 van de 3 pagina's
In winkelwagenDijkstra's algorithm 
O((n+m)log(n)). Used to find the shortest distance from one node to every other 
node in a graph. 
Inputs: 
- DAG G=(V,E) with edge weights 
- Source vertex s 
Output: 
- Array dist[...] that tells us the length of the shortest path from s to each other vertex. 
e.g. dist[v] g...
Steps to solve a Dynamic Programming Problem - ANSWER-1. Define the Input 
and Output. 
2. Define entries in table, i.e. T(i) or T(i, j) is... 
3. Define a Recurrence relationship - Based on a subproblem to the main 
problem. (hint: use a prefix of the original input 1 < i < n). 
4. Define the...
Voorbeeld 1 van de 3 pagina's
In winkelwagenSteps to solve a Dynamic Programming Problem - ANSWER-1. Define the Input 
and Output. 
2. Define entries in table, i.e. T(i) or T(i, j) is... 
3. Define a Recurrence relationship - Based on a subproblem to the main 
problem. (hint: use a prefix of the original input 1 < i < n). 
4. Define the...
Given the following list, 
my_list = [ 
[0, 1, 2], 
[3, 4, 5], 
[6, 7, 8], 
[9, 10, 11] 
] 
what will be printed when the following line of code is called? 
print(my_list[3][1:]) - ANSWER-[10, 11] 
Given the following list, 
my_list = [ 
[0, 1, 2], 
[3, 4, 5], 
[6, 7, 8], 
[9, 10, 11] 
] 
Which line...
Voorbeeld 2 van de 5 pagina's
In winkelwagenGiven the following list, 
my_list = [ 
[0, 1, 2], 
[3, 4, 5], 
[6, 7, 8], 
[9, 10, 11] 
] 
what will be printed when the following line of code is called? 
print(my_list[3][1:]) - ANSWER-[10, 11] 
Given the following list, 
my_list = [ 
[0, 1, 2], 
[3, 4, 5], 
[6, 7, 8], 
[9, 10, 11] 
] 
Which line...
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper AnswersCOM. Stuvia faciliteert de betaling aan de verkoper.
Nee, je koopt alleen deze samenvatting voor €21,61. Je zit daarna nergens aan vast.
4,6 sterren op Google & Trustpilot (+1000 reviews)
Afgelopen 30 dagen zijn er 67096 samenvattingen verkocht
Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen