WHAT IS SCIENCE?
Standard view: science = a rational, empirical and objective activity which can be characterized by
logical reasoning, empirical evidence (through observation) and the formulation of theories and
hypotheses
Science is:
- objective
- independent
- based on neutral observations
- value-free
Positivism: only knowledge based on observation (= positive knowledge) can serve the progress of
society
- Vienna Circle: prominent philosophers and natural scientists thought that non-rational philosophies
were a treat to society → two characteristics of science are essential
1. Logical reasoning
2. Substantiation of knowledge by means of empirical evidence
Logical empiricism = logical positivism → science generated knowledge about reality → should be
the basis for solving political and societal problems
- theories should be verifiable by means of observation
- indirect observations: concepts that are not directly visible must correspond to verifiable
statements → indirect observation by artifacts
- theory is founded on observations → theoretical statements to which this does not apply are
scientific meaningless
Empirical cycle: the more often completed, the greater the
scientific substantiation of the theory
- collecting of facts: observation must be value-free and
without bias
- empirical laws can be formulated on the basis of the facts
→ express a general validity → laws do not explain, but
describe reality
- theory: needed for explanations, provide deeper insight
into the supposed reality → a good theory is characterized
by its ability to predict
- hypotheses (about reality) can be derived from the
theory, predictions can be based on hypotheses → theory
must be modified if predictions do not come true
- scientific article: not chronological, but a logical
reconstruction of a scientific experiment (‘recipe’ that can
be checked)
Ethos of science by Merton (sociologist) → 4 norms how science should be like
Communism: knowledge shared property (common ownership of scientific knowledge)
Universalism: neutral observations (objective and logical consistent)
Disinterestedness: have no ideological motivations (no influence from emotional, ideological,
commercial or other interests)
Organized Scepticism: be permanently critical
Verification
- model all science after natural science
,- neutral observations, mathematical techniques
- science achieves objective knowledge of truth based on neutral observations
- criterion proper scientific statements: a statement S is properly scientific just in case S can be
verified, i.e., when it is possible to establish that S is true
- neutral statements basis for laws and theories → objective knowledge of truth
Problem 1: Theory-ladenness of observation → no universalism
- observation is not a passive recording process but requires a theory from the start → to describe an
observation, you therefore need some form of framework
- observations are not only determined by the object, but also by our visual system, neural
processing of sensory input, our language and other things we already know/believe/hope → other
theories we believe
- what we see: not just points and dots, but theoretically embedded and interpreted objects
Problem 2: Universal statements → no universalism
- induction: from particulars (examined objects) to universals (unexamined objects)
- we assume that nature is uniform, but we are not justified, because we can imagine a non-uniform
world → universal statements are informed by a subjective assumption
Problem 3: ‘underdetermination’ of theory by data → no disinterestedness
- multiple theories possible by the same data
- external virtues (like testability and being explanatory): cannot discriminate between competing
theories → empirical equivalence → look at internal virtues
- internal virtues: like entrenchment, explanatory cooperation, simplicity
- choosing of a fitting theory has at least some subjective elements
Falsification by Karl Popper
- universal statements cannot always have an empirical foundation
- refutation and confirmation: we should not derive general statements from concrete cases, but the
other way around
- from general statement → concrete case (singular statement)
- requirements on quality of experimental research (e.g. must be possible to reproduce the results)
→ singular statements can either confirm or refute the theory
- scientific theories and hypotheses are falsifiable when it is possible to refute/falsify the theory with
observations or derive testable statements from it
- theory/hypothesis that appears to be supported by facts may be unscientific because it does not
produce refutable statements
- conjecture (vermoeden) leads to theories, refutation leads to improvement of those theories
Corroboration: a theory never gets accepted ‘beyond reasonable doubt’, but surviving several
different tests might strengthen its position
- science does not begin with neutral observations
- science begins with problems: phenomena
- science solves them: forming hypotheses → testing hypothesis → upon falsification: reject theory
- a theory T is scientific just in case T can be falsified, i.e., when it is possible to refute T, to tell in
which event T is false (it should therefore be testable and specific)
- scientific theory must not only give explanations retrospectively, but also make (preferably) precise
(risky) predictions that are testable → Popper believed that this would
demarcate real scientific endeavours from pseudoscientific
- pro: falsification is deductively valid
, Problem 1: what to do with undesirable consequences
Problem 2: hypotheses never tested in isolation (testing different things at the same time) → which
element to blame?
- blame the hypothesis
- blame the number of laboratory animals, the math/statistics, logic, measuring apparatus, the air
pressure
Problems of falsification
- which hypothesis on trial → subjective → no disinterestedness
- falsification → critical stance (problem 1) → organized scepticism?
towards peers: yes
towards oneself: no
Paradigms by Thomas Kuhn (physicist and science historian)
- not normative approach, but descriptive → not science as it should be, but science as it is
- shows how science actually develops
- critique on idea of progress during ‘normal science’ (standardly defined as): development-by-
accumulation
- paradigm: universally recognized scientific achievements that, for a time, provide model problems
and solutions for a community of practitioners → a framework in which scientists do their work
- refers to the set of problems, examples, methods, techniques, rules and assumptions that are share
and used within a scientific community
- schooling might be considered promotion of paradigms
- examples: heliocentrism, generatio spontanea, Newtonian mechanics, Einsteinian relativity theory,
evolutionary theory, caloric theory
- scientific knowledge does not evolve but comes stagewise
1. Pre-scientific stage → shocking, controversial, but not yet big successes and/or broad acceptance
→ much foundational research
- often sparked by some initial success
- explanatory (Darwin on variation, adaptation and selection)
- predictive (Newton and planetary orbits)
- examples: sociology (what is a social group?), cyborgism (fixing impairments or delivering
improvements?), environmentalism (socio-ecologic and natural interdependency)
2. Normal science → scientist work on the paradigm
- aim/task scientist: to maintain the paradigm
- theories are not refuted, but existing theories are refined and confirmed (logical empiricism)
- during normal science agreement on:
- axioms: starting point for further reasoning/arguments
- problems: what is the exact field of inquiry
- methods: how to conduct experiment, what
equipment
→ anomalies: small problems for the paradigm
3. Crisis: anomalies
- anomaly type 1: misfit of (empirical) data
- anomaly type 2: missing empirical observations
- too many anomalies: scientific crisis