100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Lineaire Algebra (deel 1) €3,64   In winkelwagen

Samenvatting

Samenvatting Lineaire Algebra (deel 1)

1 beoordeling
 74 keer bekeken  1 keer verkocht

Dit is een samenvatting van Lineaire Algebra (deel 1), zoals gegeven op de Universiteit Utrecht. Het tweede deel van de samenvatting is ook op mijn account te vinden.

Voorbeeld 2 van de 13  pagina's

  • 31 maart 2021
  • 13
  • 2019/2020
  • Samenvatting
Alle documenten voor dit vak (2)

1  beoordeling

review-writer-avatar

Door: appiesourani • 8 maanden geleden

avatar-seller
brenda00
LINEAIRE ALGEBRA DEEL 1



VECTOREN

Een vector ~a is een translatie (verschuiving) in de ruimte en gaat van een punt A naar een punt B.
Een vector wordt getekend als pijl −→. De verplaatsingsafstand van een vector wordt de lengte
van de vector genoemd. De lengte van een vector ~a heeft de notatie: |~a|.

De vector met lengte 0 is de nulvector: ~0.
De somvector a + ~ b krijg je door de verschuivingen bij elkaar op te tellen.
De verschilvector a −~ b krijg je door de verschuivingen van elkaar af te trekken.
Een scalaire vermenigvuldiging van een vector wordt genoteerd als λ~a met λ ∈ R.
Een vast punt O in de ruimte noemen we de oorsprong.

Voor elk drietal vectoren ~a, ~b, ~c en elk tweetal getallen λ, µ ∈ R geldt:

1. a + b = b + a

2. a + (b + c) = (a + b) + c

3. λ(a + b) = λa + λb

4. (λ + µ)a = λa + µa

5. λ(µa) = (λµ)a


De punten van de lijn l worden gegeven door de verzameling l = {~ p + λ~a : λ ∈ R}.
Het gedeelte p~ + λ~a heet een parametervoorstelling of vectorvoorstelling van de lijn l.
De vector p~ heet de steunvector van de lijn en ~a 6= ~0 is de richtingsvector van de lijn.

Een tweetal vectoren ~a, ~b heet onafhankelijk als de één geen scalair veelvoud is van de ander.
Dus ~a, ~b zijn onafhankelijk als ze beide niet ~0 zijn en als ze in verschillende en niet-tegengestelde
richtingen wijzen.
n o
V wordt gegeven door de vectoren p~ + λ~a + µ~b : λ, µ ∈ R en dit heet een parametervoorstelling
van een vlak V. Hierin is p~ wederom de steunvector en zijn ~a, ~b de richtingsvectoren.

We kunnen elke vector ~a schrijven in de vorm λe~1 + µe~2 + ν e~3 voor goed gekozen λ, µ, ν. Daarbij
zijn λ, µ, ν de coördinaten of kentallen van de vector ~a ten opzichte van de basis e~1 , e~2 , e~3 .
(λ stappen naar voren, µ stappen naar rechts, ν stappen naar boven.)
 
x1
Kolomvector notatie: x2 
x3
Rijvector notatie: (x1 , x2 , x3 )t waarin t (transpositie) betekent dat we van een rij een kolom maken.




1

, We noemen een tweetal niet-evenwijdige lijnen dat elkaar niet snijdt, kruisend.

Behalve parametervoorstellingen van een vlak kan een vlak ook gekarakteriseerd worden door een
vergelijking van een vlak. Bijvoorbeeld, beschouw het vlak bestaande uit de punten met
coördinaten x1 , x2 , x3 die gegeven wordt door de parametervoorstelling
       
x1 1 1 −2
x2  = 3 + λ −1 + µ  0 
x3 1 −1 −1
Uitgeschreven geeft dit,
x1 = 1 + λ − 2µ
x2 = 3 − λ
x3 = 1 − λ − µ
En dit zorgt voor de vergelijking x1 + 3x2 − 2x3 = 8 waaruit λ, µ verdreven zijn.
Parametervoorstellingen van lijnen en vlakken zijn niet uniek vastgelegd.


INWENDIGE PRODUCTEN

Het inwendig product van ~a en ~b is het getal |~a||~b| cos φ en heeft als notatie: ~a · ~b. De hoek
ligt tussen 0 en π radialen in.

Als ~a en ~b loodrecht op elkaar staan (φ = π/2), dan geldt ~a · ~b = 0. Als ~a of ~b de nulvector is,
dan is het begrip ”hoek” tussen ~a en ~b niet goed gedefinieerd. In dat geval spreken we af dat ~a ·~b = 0.

De lengte van x met kentallen x1 , x2 , x3 wordt, via de Stelling van Pythagoras, gegeven door
|~x|2 = x21 + x22 + x23
q √
En dus korter geschreven als |~x| = x21 + x22 + x23 = ~x · ~x

Voor elk tweetal vectoren ~x, ~y met kentallen (x1 , x2 , x3 ) en (y1 , y2 , y3 ) geldt
~x · ~y = x1 y1 + x2 y2 + x3 y3
Twee vectoren ~x, ~y zijn onderling orthogonaal als ~x · ~y = 0.

Bij elk vlak hoort een zogenaamde normaalvector welke loodrecht op het vlak staat. Deze is op
scalaire factor na vastgelegd. Kies een normaalvector ~n van V en stel p~ ∈ V: Elk punt x ∈ V heeft
de eigenschap dat ~n · (~x − p~) = 0 Ofwel, ~n · ~x = ~n · p~, in coördinaten:
n1 x1 + n2 x2 + n3 x3 = n1 p1 + n2 p2 + n3 p3
De normaalvector kan ook gebruikt worden om een vergelijking van het vlak op te stellen. Als we
weer het voorbeeld pakken van hierboven, krijgen we:
   
1 −2
~n · −1 = ~n ·  0  = 0
−1 −1

2

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper brenda00. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €3,64. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 73918 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€3,64  1x  verkocht
  • (1)
  Kopen