100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Inleiding Logica Samenvatting

Beoordeling
-
Verkocht
8
Pagina's
15
Geüpload op
02-05-2021
Geschreven in
2020/2021

Deze samenvatting bevat voor zowel de eerste als de tweede module van het vak Inleiding Logica alle besproken begrippen en veel van deze begrippen worden laten zien aan de hand van voorbeelden. Ook alle regels die gebruikt worden bij bijvoorbeeld, natuurlijke deductie, resolutie en semantisch tableau worden uitgelegd. Bevat zowel predicatenlogica als propositielogica. Ook bevat het een aantal stappenplannen voor opdrachten als het opstellen van een Conjunctieve NormaalVorm en het bewijzen van stellingen.

Meer zien Lees minder









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
2 mei 2021
Aantal pagina's
15
Geschreven in
2020/2021
Type
Samenvatting

Voorbeeld van de inhoud

Inleiding Logica

Samenvatting
2020-2021


Week 1
Hoorcollege 1
Een redenering bestaat uit premissen en een conclusie, als de premissen waar zijn, dan moet de con-
clusie ook waar zijn. De geldigheid van een redenering hangt af van de vorm.

Verzameling: collectie bestaande uit elementen. Je definieert een verzameling door (1) de elementen
op te sommen of door (2) de elementen te beschrijven.

a ∈ A: a is een element uit de verzameling A
A ⊆ B: A is een deelverzameling van B, alle elementen die in A zitten, zitten ook in B
A ⊂ B: A is een echte deelverzameling van B, alle elementen die in A zitten, zitten ook in B en er is
minstens één element in B die niet in A zit.

extensionaliteitsaxiome: Als twee verzamelingen dezelfde elementen hebben, dan zijn ze gelijk (A = B).

Singleton: verzameling met slechts één element
Lege verzameling: verzameling zonder elementen (∅) Machtsverzameling: De machtsverzameling van
A bevat alle mogelijke deelverzamelingen van A (P (A))

De lege verzameling is een deelverzameling van elke verzameling, behalve van zichzelf.

Doorsnede/intersectie: A ∩ B (bestaat uit alle elementen die zowel in A als in B zitten)

Vereniging: A ∪ B (bestaat uit alle elementen uit A en B)

Verschil: A − B (bestaat uit alle elementen uit A die niet in B zitten)

Complement: Ac (het complement van A relatief E bestaat uit alle elementen uit E die niet in A zitten)

Idempotentie: A × A = A
Commutatief: A × B = B × A
Associatief: (A × B) × C = A × (B × C)
(× stelt hierboven steeds een willekeurige operator voor)


Hoorcollege 2
Cartesisch product van A en B: {< x, y > | x ∈ A en y ∈ B}, bevat dus eigenlijk alle mogelijke relaties
tussen twee verzamelingen.




1

, Relatie:
Een deelverzameling van A × B is een tweeplaatsige/binaire relatie tussen verzamelingen A en B.
Relaties worden vaak grafisch weergegeven.

Domein en bereik
Als R ⊆ A × B, dan is het domein van R de verzameling van alle x ∈ A waarvoor er een y ∈ B is
waarvoor geldt dat < x, y >∈ R. Het bereik is dan de verzameling van alle y ∈ B waarvoor er een
x ∈ A is waarvoor geldt dat < x, y >∈ R.

Soorten relaties:
• Reflexief: altijd < x, x >∈ R
• Irreflexief: nooit < x, x >∈ R
• Symmetrisch: als < x, y >∈ R, dan ook < y, x >∈ R
• Asymmetrisch: als < x, y >∈ R, dan niet < y, x >∈ R
• Antisymmetrisch: als < x, y >∈ R en < y, x >∈ R dan x = y
• Transitief: als < x, y >∈ R en < y, z >∈ R, dan ook < x, z >∈ R (’Alles wat je in twee stappen
kan bereiken kan je ook in één stap bereiken.’)
• Intransitief: als < x, y >∈ R en < y, z >∈ R, dan niet < x, z >∈ R


Partiële orde:
– Reflexief
– Antisymmetrisch
– Transitief


Equivalentierelatie:
– Reflexief
– Symmetrisch
– Transitief

Functies
Een relatie f ⊆ A × B heet een functie als voor elke x ∈ A precies één element y ∈ B is waarvoor geldt
dat < x, y >∈ f .
We noteren zo’n functie als: f : A → B

Voor een functie f : A → B heet A het domein en B het codomein van de functie.

Voorbeeld van functiecompositie: g(f (a))

De functie f : A → B is:
– surjectief als: Voor elke b ∈ B is minstens één a ∈ A met f (a) = b.
– injectief als: Voor elke b ∈ B is hoogstens één a ∈ A met f (a) = b.


2

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
dalayna03 Universiteit van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
76
Lid sinds
4 jaar
Aantal volgers
50
Documenten
6
Laatst verkocht
2 maanden geleden

3,9

13 beoordelingen

5
5
4
3
3
4
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen