100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Alle Tentamenstof Topic Algorithmic Persuasion in the Digital Society €6,48
In winkelwagen

Samenvatting

Summary Alle Tentamenstof Topic Algorithmic Persuasion in the Digital Society

1 beoordeling
 23 keer verkocht

Dit is een uitgebreide samenvatting van alle tentamenstof voor Topic Algorithmic Persuasion in the Digital Society. Zowel de hoorcolleges als de literatuur zijn in deze samenvatting verwerkt. Dankzij deze samenvatting en mijn andere document 'Begrippenlijst Topic Algorithmic Persuasion in the Digit...

[Meer zien]

Voorbeeld 3 van de 64  pagina's

  • 27 mei 2021
  • 64
  • 2020/2021
  • Samenvatting
Alle documenten voor dit vak (13)

1  beoordeling

review-writer-avatar

Door: Mathias • 3 jaar geleden

avatar-seller
DemiVanPelt
Week 1 – Introduction to Algorithms and
the Digital Society
Defining algorithms
Algorithms are encoded procedures for transforming input data into a desired output, based
on specified calculations (Gillespie, 2014)
- 3 building blocks
o Input = data (recept)
o Set of rules = algorithm
(volgen van recept)
o Output = result (cake)


Algorithmic Power

What are algorithms capable of doing?
- Prioritization (making an ordered list)
Emphasize or bring attention to certain things at the expense of others
(e.g., Google Page rank)
- Classification (picking a category)
Categorize a particular entity to given class by looking at any number of that entity’s
features
(e.g., inappropriate Youtube content)
- Association (finding links)
Association decisions mark relationships between entities
(e.g., OKCupid dating match)
- Filtering (isolating what’s important)
Including or excluding information according to various rules or criteria.
o Inputs to filtering algorithms often take prioritizing, classification, or
association decisions into account (Facebook news feed)
- Sometimes combinations of these usages

Two types of algorithms
- Rule-based algorithms
• Based on a set of rules or steps
• Typically “IF - THEN” statements à {IF 'condition' THEN 'result’}
• (+) Quick, easy to follow, but (-) only applicable to the specified conditions
- Machine learning algorithms
• Algorithms that “learn” by themselves (based on statistical models rather
than deterministic rules)
• These algorithms are “trained” based on a corpus of data from which they
may “learn” to make certain kinds of decisions without human oversight
• (+) Flexible and amenable to adaptations, (-) but need to be trained, & black-
box

,= important distinction
- Black box = the idea that the algorithm makes a decision, but we don’t know why it’s
making that decision. Because the algorithm is learning by itself
à scary because no insights

Machine learning (ML) algorithms
- In data-intensive online environments, ML algorithms have become the standard
- Logic: train the algorithm on a sample of data, and then it can be used for making
predictions about other data
- Facebook, Amazon, Netflix, etc... use ML algorithms
• They have loads of data, thus the machine has lots to learn
• A few hundred lines of code can easily generate a model consisting of
millions of lines
- Example: Facebook’s DeepFace algorithm




• Surveillance capitalism (S. Zuboff) book


The level of automation in algorithms
There is no such thing as ‘the algorithm’
- Lots of differences in automation
- Humans should always be kept in the loop, so we should avoid number 10




Recommender Systems
- Recommender Systems are algorithms that provide suggestions for content that is
most likely of interest to a particular user (Ricci et al., 2015)

, • These algorithms that decide which content to display to whom based on
certain criteria
• Users are thus receiving distinct streams of online content
• E.g., news feed of FB, movies on Netflix, songs on Spotify, video’s on
YouTube, products on Amazon, etc.
- Rationale: avoid choice overload, to maximize user relevance, and to increase work
efficiency
- Personalization

Recommender Systems: Techniques
3 very important types of recommender systems!
- Content-based filtering: these algorithms learn to recommend items that are similar
to the ones that the user liked in the past (based on similarity of items)
- Collaborative filtering: these algorithms suggest recommendations to the user
based on items that other users with similar tastes liked in the past
- Hybrid filtering: these algorithms combine features from both content-based and
collaborative systems, and usually with other additional elements such as (e.g.,
demographics) [mostly used]
o E.g., Netflix’s recommender system


How people perceive algorithms
- There is some kind of paradox

Algorithmic appreciation
- People rely more on advice from algorithms than from other people (Logg, Minson,
and Moore, 2019)
- Despite blindness to algorithm’s process (“black-box”)
- Automation bias
• Humans tend to over-rely on automation (blind faith in information from
computers)
• Information from automation > information from humans
• Humans are imperfect, whereas computers are objective, rational, neutral,
reliable, etc.
• E.g., GPS system, automatic pilot, spelling checker




- You can never have blind faith in automation

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper DemiVanPelt. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,48. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 62774 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,48  23x  verkocht
  • (1)
In winkelwagen
Toegevoegd