100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary M&S4: Introduction to Optimization Techniques €10,99
In winkelwagen

Samenvatting

Summary M&S4: Introduction to Optimization Techniques

 7 keer verkocht

It is a summary of M&S4: Introduction to Optimization Techniques. It contains all the theoretical knowledge needed for the exam. Included are also templates which can be used to fill in to execute the different techniques.

Voorbeeld 4 van de 38  pagina's

  • 13 juni 2021
  • 38
  • 2020/2021
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
CocodB
M&S 4
Introduction to Optimization Techniques

M&S 4 – Introduction to Optimization Techniques

Subjects Subject Details
Linear Programming o Linear Programming (LP) Problem
o Graphical Method

Simplex Method - Simplex Tableau
- Simplex Method
- Big M Method

Network Problems  Terminology of Network Problems
 Transportation Problem (week 6)
o North-west Corner Method (week 6)
 Shortest Path (week 6)
o Dijkstra’s Algorithm
o Hillier and Lieberman Method
 Maximum Flow Problem (week 7)
 Minimum Cost Problem (week 7)
 Travelling Salesman Problem (week 8)
o Nearest Neighbor

Definitions - Terms with explanation (week 1 – week 8)

Templates (which can be 1. Simplex Tableau
used for the exam) 2. Dijkstra’s Algorithm
3. Hillier and Lieberman Method
4. Minimum Cost Flow Problem
5. Nearest Neighbor Algorithm




1

, M&S 4
Introduction to Optimization Techniques

Linear Programming
Linear Programming is maximizing or minimizing a linear goal
function subject to linear constraints.

The LP Problem is allocating limited resources among competing activities in a best possible
way.
For example. Hit the target by using maximum 3 arrows form minimal 5 meters distance.
 Decision Variables
o Which units do you change in order to reach your objective?
o For example. x 1 , x 2
 Objective Function
o Goal of the problem.
o Maximum or minimum.
o For example. Maximize profit or minimize costs.
 Constraints
o Restrictions or limitations on the decision variables.
o For example. 5 x 1+ 9 x 2 ≤35 .

Steps in Linear Programming
1. Determine the variables.
2. Formulate the objective.
3. Write the constraints.
4. Solve the LP problem.

Linear Programming – Graphical Method
The graphical method is best explained using an example.
Acme Bicycle Company (ABC) produces two kinds of bicycles:
- Mountain bikes; profit €15 per bicycle.  X1
- Street racers; profit €10 per bicycle.  X2
Which amount of each type of bicycle should be produced to maximize profit?

Two teams of producers with maximum production rate: 2 mountain bikes per day and 3
street racers per day respectively.
Metal finishing machine requires the same amount of time for both type of bikes and can
produce in total 4 bikes per day, of either type.

1. Determine the variables.
x 1 = Amount of produced mountain bikes per day.
x 2 = Amount of produced street racers per day.

2. Give the objective function.
Maximum z=15 x 1+10 x 2.

3. Formulate the constraints.
x1 ≤ 2 Mountain bike production limit.
x2≤ 3 Street racers production limit.
x 1+ x2 ≤ 4 Metal finishing machine production limit.
x1, x2≥ 0 There can be no negative production.

2

, M&S 4
Introduction to Optimization Techniques

The limiting value of each constraint is shown as a line. Each constraint
eliminates part of the plan. See graph on the right.

Terminology solution space
 Terminology for possible solutions:
o Feasible solution; all constraints are satisfied.
o Optimal solution; feasible solution with most favorable value
of the objective.
o Corner-point feasible (CPF) solution; solution at the corner of the feasible
region.

Find the optimum
The optimum is always a corner point. Two ways to find the optimum:
Option 1. Calculate the objective value for each CPF. The most favorable outcome of the
objective is the optimum.
a. Calculate the intersections of the constraints and their objective value.




Option 2. Use the objective line. The optimum is where the objective function
has only one point in the feasible region left when moving it from left to right.
1. Choose a random number. (Hint; choose an easy multiplier of both
coefficients.
For example. Objective z=15 x 1+10 x 2. Easy to multiplier is 30.
2. Draw the objective line for the chosen number.
For example. z (2,0 )=30∧z ( 0,3 )=3.
3. Shift the objective line such that the objective line touches only
one point of the feasible region, this will be the optimum.
For example. z (2,2 )=50.


Excel Solver - Brightspace
How to use the LP solver in Excel, see video on Brightspace.




3

, M&S 4
Introduction to Optimization Techniques

Special types of LP problems
1. Pure integer programming. All variables integer.
2. Mixed integer programming. Some but not all variables integer.
3. Binary integer programming. All variables are binary (0 or 1).

An integer solution can never be better than the LP solution and is usually a worse solution.
A rounded optimal solution of the non-integer problem is not necessary the optimal solution
of the integer problem. The graphical method does not always lead to the optimal integer
solution.
When integer programming in Excel, go to data tab  Analyze group  solver.

Example 1. Production parts
Step 1. Variables:
x 1 = Amount of produced parts A.
x 2 = Amount of produced parts B.

Step 2. Objective: Max. z=30 x 1+ 20 x 2

Step 3. Constraints:
2 x1 +1 x 2 ≤ 140 Max. available capacity for drilling.
1 x1 +2 x 2 ≤ 160 Max. available capacity for
1 x1 +1 x2 ≤ 900 Max. available capacity for
x1, x2≥ 0 There can be no negative production.

Example 2. Rolls Royce
Step 1. Variables:
x 1 = Number of aircraft engines.
x 2 = Number of train engines.

Step 2. Objective: Max. z=14 x 1 +12 x 2

Step 3. Constraints:
2 x1 +3 x 2 ≤ 12 Wiring hours production limit.
6 x 1+ 5 x 2 ≤30 Assembly hours production limit.
x1, x2≥ 0 There can be no negative production.

Example 3. Copier Machine
Step 1. Variables:
x 1 = Number of high-speed copiers.
x 2 = Number of low speed copiers.

Step 2. Objective: Min. z=6,000 x 1+ 4,000 x 2

Step 3. Constraints:
x 1+ x2 ≥6 At least six copiers.
x1≥ 1 At least one high speed copier.
20,000 x 1+10,000 x 2 ≥ 75,000 A and B need to handle at least 75,000 per day.
x1, x2≥ 0 There can be no negative production.

4

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper CocodB. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €10,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 62774 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€10,99  7x  verkocht
  • (0)
In winkelwagen
Toegevoegd