100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten
logo-home
need help? €9,13
In winkelwagen

Tentamen (uitwerkingen)

need help?

 0 keer verkocht
  • Vak
  • Instelling
  • Boek

this is the as level further math edexcel 2020 paper 1

Voorbeeld 3 van de 28  pagina's

  • 17 juni 2021
  • 28
  • 2020/2021
  • Tentamen (uitwerkingen)
  • Antwoorden
avatar-seller
Please check the examination details below before entering your candidate information
Candidate surname Other names


Centre Number Candidate Number
Pearson Edexcel
Level 3 GCE
Monday 5 Oct 2020
Afternoon (Time: 1 hour 40 minutes) Paper Reference 8FM0/01

Further Mathematics
Advanced Subsidiary
Paper 1: Core Pure Mathematics

You must have: Total Marks
Mathematical Formulae and Statistical Tables (Green), calculator



Candidates may use any calculator allowed by Pearson regulations.
Calculators must not have the facility for symbolic algebra
manipulation, differentiation and integration, or have retrievable
mathematical formulae stored in them.
Instructions
•• Use black ink or ball-point pen.
If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
• centre
Fill in the boxes at the top of this page with your name,
number and candidate number.
• clearly labelled.
Answer all questions and ensure that your answers to parts of questions are

• Answer the questions in the spaces provided
– there may be more space than you need.
• You should show sufficient working to make your methods clear. Answers
without working may not gain full credit.
• Inexact answers should be given to three significant figures unless
otherwise stated.
Information
•• AThere
booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
are 10 questions in this question paper. The total mark for this paper is 80.
• – use this asfora guide
The marks each question are shown in brackets
as to how much time to spend on each question.
Advice
•• Read each question carefully before you start to answer it.
Try to answer every question.
• Check your answers if you have time at the end. Turn over



*P62685A0128*
P62685A
©2020 Pearson Education Ltd.

1/1/1/1/1/1/1/

,1. A system of three equations is defined by

kx + 3y – z = 3
3x – y + z = –k
–16x – ky – kz = k
where k is a positive constant.
Given that there is no unique solution to all three equations,
(a) show that k = 2
(2)
Using k = 2
(b) determine whether the three equations are consistent, justifying your answer.
(3)
(c) Interpret the answer to part (b) geometrically.
(1)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________

2
*P62685A0228*

, Question 1 continued
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________

(Total for Question 1 is 6 marks)

3
*P62685A0328* Turn over

Dit zijn jouw voordelen als je samenvattingen koopt bij Stuvia:

Bewezen kwaliteit door reviews

Bewezen kwaliteit door reviews

Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!

In een paar klikken geregeld

In een paar klikken geregeld

Geen gedoe — betaal gewoon eenmalig met iDeal, creditcard of je Stuvia-tegoed en je bent klaar. Geen abonnement nodig.

Direct to-the-point

Direct to-the-point

Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper 09guled. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €9,13. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 68175 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Begin nu gratis
€9,13
  • (0)
In winkelwagen
Toegevoegd